MAINTENANCE AND OPERATION INSTRUCTION MANUAL

Device Manager

Compatible with:
DB4004, DB7000, DB7007,
Radio Explorer II, DB44, DB45

R·D·S
RADIO DATA SYSTEM

GPS

DEVA
BROADCAST

Publish Date: 26-Nov-2018
Contents

Introduction .. 8

Typographic conventions ... 9

General Information ... 10

Comparison Table of the supported devices .. 11

Loading and Running The Software .. 12

 * Minimal System Requirements .. 12
 * Installing the Software... 12

DEVA Device Manager Software Update ... 16

 1. *Download latest version* ... 16
 2. *Export Device List* .. 16
 3. *Export all LOG Files* .. 17
 4. *Main Application Settings* ... 17
 5. *Backup Individual devices* .. 18
 6. *Uninstall the previous version* .. 19
 7. *Install Latest Version* ... 19
 8. *Possible Restart* .. 19
 9. *Import Device List* .. 19
 10. *Restore Individual Devices* .. 20
 11. *Apply Main Application Settings* ... 20

DEVA Device Manager Software Usage .. 21

Getting Started ... 22

 * Master Password.. 22
 * Quick access tools ... 23

 * Device .. 23
 * Connection .. 23
 * Map.. 23
 * Log Manager .. 24
 * Settings, Help and Exit .. 24
 * How to add a New Device ... 25

 * Identification .. 25
 * Location .. 25
 * Connection .. 25
 * Export/Import Device List ... 27

 * Export Device List ... 27
 * Import Device List ... 28
 * Current Status ... 29

Device Managing ... 30

 * Edit Device ... 30
 * Remove Device ... 30
 * View Device ... 30
 * Lock/Unlock Device .. 30
 * Locate device on map .. 30

Connections Managing ... 31

 * New Connection .. 31
 * Edit Connection .. 31
 * Remove Connection .. 31
Type 9A & 9B groups: Emergency warning systems or ODA .. 122
Type 10A & 10B groups: Program Type Name (10A) and Open data (10B) 123
Type 11A & 11B groups: Open Data Application ... 124
Type 12A & 12B groups: Open Data Application ... 125
Type 13A & 13B groups: Enhanced Radio Paging or ODA ... 126
Type 14A & 14B groups: Enhanced Other Networks information (EON) 127
Type 15A & 15B groups: Fast basic tuning and switching information 128
RadioText Plus (RT+).. 129

APPENDIX C.1 .. 130
PTY Code Description Used in RBDS Mode – North America.. 130

APPENDIX C.2 .. 131
PTY Code Description Used in RDS Mode – Europe, Asia ... 131
Introduction

DEV A Broadcast Ltd. is an international communications and high-technology manufacturing organization, its corporate headquarters and facility located in Burgas, Bulgaria. The company serves the broadcast and corporate markets worldwide – from consumers and small businesses to the largest global organizations. It is dedicated to the research, design, development and provision of advanced products, systems and services. DEV A launched its own brand back in 1997 and has nowadays evolved to become known as a market leader and internationally reputed manufacturer of user-friendly, cost-effective and innovative broadcast products.

Creativity and innovation are deeply woven into DEV A corporate culture. Through successful engineering, marketing and management our team of dedicated professionals creates future-oriented solutions to improve customers’ performance. You may rely that all issues communicated to our crew would be addressed accordingly. We pride ourselves on our pre and post-sales support and purchase services, which along with the outstanding quality of our radio gear have won us due respect and the market authority position.

DEV A best-of-breed solutions have become the best sellers for our partners. The strategic partnerships which have been formed with industry leaders during all these years that we have been operating on the broadcasting market, have proved us a reliable business partner and a valuable asset, as our dealers worldwide would confirm. In constant pursuit of precision and long-term satisfaction, DEV A enhances the reputation of our partners and clients alike. Furthermore, we have already a proven merit as a credible partner provider.

Our portfolio offers complete line of high quality and competitive products for FM and Digital Radio, Radio Networks, Telecommunication Operators and regulation authorities. For almost two decades of intensive software and hardware development, we have achieved a unique price-performance and endurance of our product lines. Our company’s multitude of equipment and services is in line with the latest technologies and key trends. The most recognizable characteristics attributed to DEV A products are their clear-cut, streamlined design, easiness of use and cost-effectiveness: simplicity of forms but multiplicity of functions.

For us there is no stage when we deem that we have reached the most satisfactory level in our work. Our engineers are in constant pursuit of new ideas and technologies to be captured in DEV A solutions. Simultaneously, a strict control is being exercised at each step of any new development. Experience and hard work are our fundament but the continuous improving process is what we never leave aside. DEV A participates on a regular basis in all landmark broadcasting events, not only to promote its products, but to exchange valuable know-how and experience. We are also engaged in international large-scale projects involving radio and audio solutions which makes us even more competitive on the global market.

All DEV A products are developed and produced in accordance with the latest ISO 9001 quality control standards.
Typographic conventions

This manual uses the following typographic conventions:

<table>
<thead>
<tr>
<th>Style</th>
<th>Used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE</td>
<td>Important notes and recommendations</td>
</tr>
<tr>
<td>Example</td>
<td>Used when example text is cited</td>
</tr>
<tr>
<td>“Menu” on page XX.</td>
<td>References</td>
</tr>
<tr>
<td>[OK]</td>
<td>Interface Interactive buttons.</td>
</tr>
<tr>
<td>Settings</td>
<td>Menu paths are represented as follows: Settings> General > Backup</td>
</tr>
</tbody>
</table>
General Information

DEVA Device Manager is software to control several devices from DEVA’s wide range product line. Developed to support an increasing demand for data processing applications for FM Monitoring, DEVA Device Manager is fully compatible with:

- DB4004 - DSP-based FM Radio Monitoring Receiver;
- DB7000 – FM Radio Re-Broadcast Receiver;
- Radio Explorer II – Mobile FM Radio Analyzer;
- DB44 – Compact FM Radio Monitoring Receiver;
- DB45 – DSP-Based FM Radio Receiver and Modulation Analyzer;

Conformable to the level of access of each device, DEVA Device Manager automatically adjusts to the constraints defined. It switches instantaneously to the desired frequency and overviews all the predefined parameters as values or as a graph, distributed over time. The map interface shows you at a glance the status of your radio network. It also displays all the critical events or alarms that might have taken place and need to be checked immediately. The easy-to-use interface allows quick and easy connection to all of the controlled devices.

DEVA Device Manager is mouse navigated and utilizes user-friendly controls and drop-down menus. The Mouse clicks and sliding, control the movement of the data cursor for instant readout of both the X and Y axes. The software enables the user to define both minimum and maximum threshold values for all time series functions.

Aimed at facilitating the use of our products, DEVA Device Manager Software is free of charge. The latest release can be found on our website www.devabroadcast.com or on a supplied CD accompanying the purchased product. The downloaded software can be used by customers who have an already installed DEVA Device Manager, for the purposes of software update or by clients who have recently purchased a DEVA device.

This Manual is intended to:

- Guide you through the installation process;
- Help you with the initial setup of the Software;
- Familiarize you with the supported applications.

PLEASE NOTE that the supported functions differ, depending on the used device and might be contextually different. An explanatory mark at the beginning of each application will indicate which device supports the particular function that is being explained.
<table>
<thead>
<tr>
<th></th>
<th>DB4004</th>
<th>DB7000</th>
<th>Radio Explorer II</th>
<th>DB44</th>
<th>DB7007</th>
<th>DB45</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Level</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RF Strength</td>
<td>—</td>
<td>—</td>
<td>✓</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Multipath</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MPX Level</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MPX Power</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Audio (Left, Right)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Audio (L+R, L-R)</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pilot Level</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RDS Level</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Basic RDS (PI, PS, TA/TP, PTY, RT, AF, MS, DI …)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RT+</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TMC</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Alarms</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Logger</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PI Campaign</td>
<td>—</td>
<td>—</td>
<td>✓</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>BandScan</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>✓</td>
<td>—</td>
<td>—</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>Spectrum analyzer (FFT)</td>
<td>✓</td>
<td>—</td>
<td>—</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>Stereo Measure</td>
<td>✓</td>
<td>—</td>
<td>—</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>GSM Modem</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GPS</td>
<td>—</td>
<td>—</td>
<td>✓</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>GPO</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>—</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>WEB Interface</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FTP Server</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SNMP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SNMP Trap notifications</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Email notifications</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RF Inputs</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MPX Output</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
<td>—</td>
<td>✓</td>
<td>—</td>
</tr>
<tr>
<td>Analog Audio Output</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Digital Audio Output</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td>—</td>
</tr>
<tr>
<td>Ethernet</td>
<td>10/100 Base-T</td>
<td>10/100 Base-T</td>
<td>10/100 Base-T</td>
<td>10/100 Base-T</td>
<td>10/100 Base-T</td>
<td>10/100 Base-T</td>
</tr>
<tr>
<td>USB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
<td>✓</td>
<td>—</td>
</tr>
</tbody>
</table>
Loading and Running The Software

DEVA Device Manager Software is provided to our customers free of charge. The latest release can be found on our website www.devabroadcast.com and the supplied CD.

MINIMAL SYSTEM REQUIREMENTS

- Pentium(R) Processor or Compatible
- Windows XP and above
- 1024MB RAM
- 100MB free hard drive space for installation
- 16 or 32-bit graphics color depth
- 1024 by 768 pixels screen resolution
- Screen DPI setting to 96 dpi
- Universal Serial Bus 2.0

INSTALLING THE SOFTWARE

The installation process is fairly simple and identical for all supported by the software devices.

1. Use the Installation file which can be found on the supplied CD or downloaded from www.devabroadcast.com/downloads;
2. Find DEVA Device Manager file, double click on the installation file to launch the Wizard;
3. Accept the default recommendations and click “Next>” in the end of each step;
4. When asked to place an icon on the Desktop of your computer and Install TAP Drivers, make sure that the check boxes are enabled and click “Next>”;

- 12 -
NOTE: The TAP Drivers should be installed in order for the computer to communicate with the device through the USB port. If you have already installed the TAP Drivers on your PC, disable the corresponding box and press “Finish”. If not, continue with the steps below:

5. Click Install to continue with the installation process;
6. TAP Windows Setup Wizard will appear. Click “Next”;}
7. Accept the License Agreement;

8. When asked to select the installation components check the “TAP Virtual Ethernet Adapter” box and click “Next>”;
9. Accept the default recommendations and click “Next>” in the end of each step;
10. Click “Finish” to complete the TAP Windows Setup Wizard;
11. Finally, launch the program.
DEVA Device Manager Software Update

This document is intended to guide you through the update process of the DEVA Device Manager Software. Following the steps listed below will ensure that the used devices will be retained in the computer’s memory and used later on. Otherwise the currently entered information will be lost.

PLEASE BEAR IN MIND that a master password will be required for some of the steps listed below.

1. **DOWNLOAD LATEST VERSION**

 The latest version of DEVA Device Manager Software can be found our website - http://www.devabroadcast.com/downloads

2. **EXPORT DEVICE LIST**

 Prior to the installation of the new version the Device List should be exported.
 - Click on “Device” menu and select “Export Device List”;
 - Enter your Master password and press [OK];
 - Save the file.
3. EXPORT ALL LOG FILES

The menu path is: Log Manager > Viewer > Export all button.

4. MAIN APPLICATION SETTINGS

If you have made any changes to the software’s main application settings, please write them down. As upon update, all custom settings will be lost. The main settings can be found in the relevant menu placed in the menu bar.
5. BACKUP INDIVIDUAL DEVICES

In order for the custom applied Software settings to the Device to be preserved (if considered needed) - signal appearance and common visuals for example, backup of the devices included in the Device list should be made. A master password will be required. The menu path is (as depicted below) Device > Settings > Backup.

a) Device : DB4004 for example

b) Settings :

c) Backup :
6. UNINSTALL THE PREVIOUS VERSION

Uninstall the previous version of the DEVA Device Manager.

7. INSTALL LATEST VERSION

Following the simplified process, install the latest version of the Software. If you are experiencing any problems, please refer to DEVA Device Manager Software complete user manual, section Loading and Running the Software.

8. POSSIBLE RESTART

After the installation process is completed, a shortcut to DEVA Device Manager will appear on the desktop of your PC. Double click on the icon to start the program.

Only if any general changes in the new version of the DEVA Device Manager’s code have been made, a notification message informing you that the currently available data is not compatible with the current version, and will be archived will appear. If so, click “OK” and start the software again.

Having the latest LOG files downloaded, and the device list exported will prevent loss of important data.

If due to any reason you have not performed any of the above cited procedures, please contact us at support@devabroadcast.com

9. IMPORT DEVICE LIST

• Click on “Device” menu and select “Import Device List”;

• Select the desired file and press [OK];
• The information will be transferred and displayed on DEVA Device Manager main window.
10. RESTORE INDIVIDUAL DEVICES

If a backup device procedure has been performed, you can return the previously applied settings to the devices, following the procedure described in step 4. This time using the [Restore] button, instead of [Backup].

PLEASE HAVE IN MIND that the custom settings applied to the software should be restored - signal appearance, common visuals, units/modes, etc.

![Device Settings](image)

11. APPLY MAIN APPLICATION SETTINGS

If needed, change the DEVA Device Manager Main Application Settings. For further information, please refer to the DEVA Device Manager Software complete user manual, section Main Application Settings.

If you are experiencing any difficulties, or due to any reason the update process fails, please contact us at support@devabroadcast.com.
DEVA Device Manager Software Usage

After the installation process is completed, a shortcut to DEVA Device Manager will appear on the desktop of your PC. Double click on the shortcut to run the Software. Subsequently, the main application window will appear, followed by a dialog window requiring a Master Password (see “Master Password” on page 22). Most of the functions would be disabled since no devices have been listed in the DEVA Device Manager so far.
Getting Started

MASTER PASSWORD

The Master Password protects stored passwords used for an access to remote devices. If you share a computer with anyone, it is recommended that you use a master password.

![Master Password - DEVA Device Manager](image)

We recommend that you enter the password when DEVA Device Manager is activated for the first time. Otherwise, you will be continuously reminded to enter it any time there is an operation regarding stored passwords.

The master password is used only for export and import of the list of devices operated by the DEVA Device Manager software. It is not intended to be used as user credentials for the DEVA devices supported by the software.

NOTE: Please make sure you remember the Master Password you have set. If you forget your Master Password, you would not be able to access any of the information protected by it.
If you have enabled the UPNP function, DEVA Device Manager will find and add automatically all supported devices connected to your PC through USB or LAN (see “Monitoring” on page 56). In case of a failure, remote device can be added manually by two methods – New Device or Import Device List. These options are explained in detail below:

QUICK ACCESS TOOLS

The quick access tools are divided in several groups and represent the same settings that can be applied through the relevant drop-down menus.

Device

- allows the sequence of the devices in the list to be changed;
- the devices in the list will be arranged in alphabetical order - A/Z or Z/A;
- Add New Device – allows new device to be added;
- Edit Device – allows editing of the basic settings applied in order for connection to be established;
- Delete Device – deletes the selected device;
- View Device – will open the main control window of the device. To establish connection, press [Connect];
- Lock/Unlock Device – will lock permanently the position of the device on the map. To unlock/change the position, select the device from the list and press the button again;
- Locate Device on Map – will show the position of the device in the center of the map.

Connection

- New Connection – allows new connection to the device to be added;
- Edit Connection – allows editing of the basic settings used for the connection;
- Delete Connection – deletes the selected connection;
- Monitor/Unmonitor Connection – select a connection and press the button in order for it to be used for background monitoring of the device. To stop monitoring the connection, press the button again;
- Download LOGs – select a connection and press the button in order for it to be used for downloading of the LOG files. To stop the download, press the button again;
- Connect – will establish connection with the device and open the main control window.

Map

- Zoom In – will zoom in the map;
- Zoom Out – will zoom out the map;
Fit All – will fit the map in the DEVA Device Manager main window so as all devices could be visible;

Grayscale/Color Map – allows different color representation to be chosen.

Log Manager

– will open the control window allowing monitoring of the downloading process and visualization of the files;

Settings, Help and Exit

About – will open a new window with contact details of the manufacturer and software version;

Settings – will open the main/general settings of the DEVA Device Manager software;

Exit – will close the software.

HELPFUL TIP – you can search through the list of devices by pressing on the keyboard the first letter of the name of the unit you would like to find.
HOW TO ADD A NEW DEVICE

Press the “New Device” button . A dialog box requiring information about the device will appear. The requested data is not obligatory but might be required in order for an assigned task to be completed.

Identification

Serial Number - this field could be left blank. It will be automatically assigned the first time when you connect to a device via DEVA Device Manager Software. Once assigned, the Serial Number cannot be changed;

User and Password – credential required to access the device;

Location

Longitude and Latitude – if known the coordinates of the device location could be specified;

Lock Position – selecting this option will “lock” the device on its current position on the map. This will prevent repositioning the device by mistake;

Look – the currently entered Longitude and Latitude will be used as a center of the Map.

Locate – Enter Region, City or Address and press the “Locate” button. All results found will be listed. Select the required location and press the “Use” button in order the currently selected location to be filled in the relevant fields.

Connection

Select the device type from the relevant drop-down menu, and enter the required data (for further information on the connection settings refer to “New Connection”);
After the needed parameters are defined, the device will appear in the Device List and on the Map. There are two options of entering the device:

1. Select the preferred device and click on “View Device” button;
2. Double click on the connection listed below the device.

NOTE: Once a new device is defined an automatic connection to it will be added. For further information about the “Connection” usage refer to “Connections Managing” on page 31.

Once the device is entered, the Device Control Window will be displayed.

For further information refer to “Device Control Window” on page 65

PLEASE NOTE that the appearance of the Device Control Window differs depending on the currently selected Device.
EXPORT/IMPORT DEVICE LIST

This option is very useful for those users who want to install DEVA Device Manager on several computers and monitor the condition of devices installed on different locations.

Once you have defined all devices and placed them on the Map, you could export all settings and import them into other PCs, with DEVA Device Manager Software already installed.

Export Device List

1. Click on “Device” menu and select “Export Device List”;
2. Enter your Master password and press OK;
3. Save the file.

NOTE: Once the Device List has been exported all passwords in the resultant file will be visible to anyone who has access to it.
Import Device List

1. Click on “Device” menu and select “Import Device List”;
2. Select the desired file and press OK;
3. The information will be transferred and displayed on DEVA Device Manager main window.
CURRENT STATUS

Information about the current status of the device will be displayed by pointing with the cursor on the desired device placed on the Map. The information provided is being updated periodically, and the contents depend on the selected device/connection. For example, in DB7007 an additional window for the backup option will be also available:

In order to indicate the current status of the device on the Map, the software utilizes the following color coding system:

- **Blue** – No available information or the connection is not being monitored;
- **Green** – No alarms and status acquisition conditions are detected.
- **Red** – A problem (alarm or connection fail) with the device has been detected.
Device Managing

EDIT DEVICE

Used for editing of the device’s current information.

REMOVE DEVICE

Select the device and press the “Remove device” button 🗑️. A dialog warning window will appear. Confirm that you want to delete the device and wait for the process to complete.

VIEW DEVICE

A click on the “View Device” button 📡 will open the “Device Control Window”.

LOCK/UNLOCK DEVICE

Used for “locking/unlocking” of the device on its current position on the map.
1. Set the device at its position on the map;
2. Select the device from the list;
3. Press the “Lock”/”Unlock” button 🛠️. 🛠️.

Once “Lock” action is performed the device should be “unlocked” in order for the current position to be changed.

LOCATE DEVICE ON MAP

This function is very useful when several devices are listed.
1. Select the desired device from the Device List;
2. Press the “Locate Device on Map” button 📡.

The Software will automatically position the Map as to the device to be displayed in its center.
Connections Managing

Once a new device is added, the DEVA Device Manager can utilize several sub-connections with different functions which will facilitate the use of the device.

NEW CONNECTION

Several connections for each device could be added. In order a new connection to be added the ”New connection” button should be used.

NOTE: Although several connections for different purposes can be utilized (one for monitoring and one for downloading of the Log files, for example), only one connection at a time can be used for connecting and maintenance of the device.

A window requiring information about the connection will appear:

![New Connection Window](image)

- **Device Type** – DEVA Device Manager will determine the connection actions depending on the selected “Device Type”;
- **Alias** – a user-defined name that identifies the connection;
- **Address** – IP Address or Host Name of the device;
- **Software port** – The default value of the Software Port is 1024;
- **“Use for Background monitoring”** check box – we recommend you to leave this function enabled. Using background channel for receiving data from the device without interrupting its working process this option is ideal for monitoring of the current device status. (The function is enabled by default.) The “Eye icon”, indicating that the function is in use, will appear in front of the connection.

Complete the needed information and press OK.

EDIT CONNECTION

Used for editing of the connection’s current information – new Alias, Address / Host Name and Port could be set from here.

REMOVE CONNECTION

Select the connection and Press the “Remove connection” button. The connection will be deleted immediately.
MONITOR/UN-MONITOR CONNECTION

Select the connection to be used for background monitoring of the device and press the “Monitor Connection” button. (see “Monitoring” on page 56)

DOWNLOAD LOGS

Select the connection to be used for downloading of the log files and press the “Download Logs” button. (see “Log Manager” on page 34)

CONNECT

Control option used for connecting/disconnecting with the currently selected device through the selected connection.
Map

Each device is visually represented on the Map. This is an additional tool for fast evaluation of the currently selected device – condition, location, etc.

ZOOM IN/OUT

- Control option that will zoom in the Map image.
- Control option that will zoom out the Map image.

FIT ALL

- Control option that will position the Map in such manner as to display all devices situated on the map.

GRAYSCALE MAP/COLOR MAP

Having in mind that visual perception differs from person to person, the used map could be gray-scaled via this option, allowing easy monitoring of the current status and position of the devices.

The button is with dual use – once the grayscale function is applied, the same button would be referred as and used for “Color Map”.
Log Manager

NOTE: This function is not supported by:
• DB7000 FM Radio Re-broadcast receiver;
• DB44 Compact FM Radio Monitoring Receiver.
• DB7007 FM Radio Re-Broadcast Receiver with Built-in IP Audio & MP3 Backup Players

The Log Manager is used for downloading of device log files and for visualizing them. The log files contain records about events, such as user access or data manipulation as they occur, to serve as an audit trail, diagnostic device, or security measure.

The Log Manager can also be used for visualizing of old LOG files uploaded by the user. (see “Import Log File” on page 36)

DOWNLOAD STATUS

The current status and progress of all connections marked with “Download LOG’s” is displayed. The plus sign placed in front of the connection can be expanded in order for further information about the download status to be displayed.

On the bottom side it is placed the “Stop Download” button used for stopping of the selected download.
This menu enables the user to select the files to be visualized via the DEVA Device Manager.

Filter window content

1) **Device** – Contains a list of all the devices for which there is available information in the database logs.

2) **Log Files** – Contains a list of the available log files. The filtration method is user-defined and explained in details below. A double click on a Log file listed in section ‘Log Files’ (placed on the right part of the screen) will automatically visualize the selected file. Only one file at a time can be visualized with this option.
Interactive buttons

(1) **Refresh Filter** button – updates the displayed information - generally this button is not used, but if a log download is currently running, the newly downloaded logs will not be listed and the “Refresh filter” button should be used.

(2) **Import Log File(s), Import Log Folder(s)** buttons – if the logs are downloaded by other software or archived, the user can upload them manually:
 - one by one – pressing [Import Log Files(s)];
 - or in groups – pressing [Import Log Folder(s)].

NOTE: Each log file contains information about the device from which originates. If the Log Manager detects that the device is included in the main Device List of the program, it will automatically display its name. If the device is unknown to the software, as a name will be used the serial number of the device - for example: SN: 4K4CA827.

(3) **Preview Selected** button – The log files could also be visualized independently. This option is available whenever a file is specified in the Log Files Section. Pressing the button will activate the Log View.

(4) **Preview All** button is directly related to the “within 1 day and for 1 device only” rule and is activated only when a specific day is selected (Any Day cannot be applied). Thus, the Log Files will contain logs of a particular day and device.

(5) **Export All** – The listed Log Files will be exported to user-defined directory and saved.

(6) **Delete Selected** & **Delete All** – will delete the LOG files in accordance with the selected option.

(8) **Analyze All** – this option is available for DB4004 only and will be active when the LOGs to be visualized are gathered with DB4004. This analysis will appear in Log Analyzer section of the software (see “Log Analyzer” on page 48).
How to visualize the LOG files

In order to proceed with the visualization, the log files should be limited to one or several, all downloaded within 1 day and for 1 device only. This requires a filter to bind to the chaining (cascading) option i.e. when a particular device is chosen, this will unlock the function Year (only the stored information by years for this device will be available). After selecting the Year parameter, function Month will be enabled. Thus, accordingly Day and Hour will be enabled. The Log Files Section will be updated, depending on the defined filtration.

(1) Selected the device from Device section;
Then specify:
(2) Year;
(3) Month
(4) Day of the files to be visualized.
(5) When a particular day is chosen, the Log Manager will automatically offer to visualize the information within the whole day (i.e. as if the [Preview All] button is selected). Pressing [Yes] will open a new tab with visualization of the Log files.

IMPORTANT: Please note that, the log files should be limited to one or several, all downloaded within 1 day and for 1 device only.

In accordance with the particular Log files and the device from which they were generated, the visualization will be performed in the following sections:

- For DB4004 – in section Graph and Log Analyzer;
- For Radio Explorer II – in sections Graph and GPS.
Log View - Graph

This function is supported by:
- DB4004 - DSP-based FM Radio Monitoring Receiver;

The information about the measured signals from the selected logs is visualized as a graph situated within the X axis. The Y axis is infinite - the units depend on the specific signal.

Signals and RDS

The data from the current position of Marker 1 (MKR 1) is displayed in this section. Signals – the values of all signals are displayed. The variation of the signal is indicated in the square brackets (see “Signal Variant” on page 40). The time slot of the visualized values is noted after the @ symbol.

If a particular signal is within the predefined high or low threshold levels, the text will be marked in bold and colored in the relevant color, defined in section Alarm Elements (see “Events” on page 40)

RDS – All mandatory RDS/RBDS parameters are visualized here;
Mode – used for choosing of the RDS / RBDS local mode;
Code Table – used for choosing of the local table to be used for encoding of the PS and RT text information;

Button DI – a balloon containing a detailed interpretation of the numerical value of DI will be shown.

Button AF – a balloon containing a list of all Alternative frequencies will be shown.

Alarms and Events

All events originated in the immediate proximity to MKR 1’s position are listed here.
Right-side options/selectors Graph

Frequency Selector

- Device – the device from which the log files originate;
- Freq – specify the frequency to be visualized;
- Channels found – the name(s) of the available channels for the selected frequency are listed.

Signals

The color representation, units and signal(s) to be visualized are defined through this menu.

Signal Variant

- Average, Min and Max – represent the measured values;
- Lowest and Highest – represent the thresholds of the signal.

Zoom Control

The Graph could be fitted automatically via “Auto Fit”, options – Fit All or Fit visible only. Using the relevant buttons the graph could be zoomed in/out or centered. The X and Y span could also be managed in accordance with your requirements.

Events

The events to be displayed and their color representation on the Graph are defined through this menu.
The System and Control events are visualized as “flags” and placed at the bottom of the graph (on Y axis) because they are not specific for any signal and represent the common events related to that moment.

The RDS/RBDS Group Alarms are also represented as flags, placed above the one used for System and Control and are with the same color as the one selected for the RDS signal.

- Flag up – indicates that there is a GROUP OK event.
- Flag turned down – indicates that there is a GROUP LOSS event.

The alarm events consist of multiple components, which may also be visible/invisible and colored as required. The alarm elements placed on the Y axis are as follows:

- HI Threshold - indicated as a triangle with the apex pointing down;
- LOW Threshold – indicated as a triangle with the apex pointing up;
- Min, Average, Max – indicated as rectangles;
- Status – indicated as text presenting the current condition (HI MPX).

Markers

By choosing the relevant check box, the markers can be visible or not and adhere to a signal. Marker 1 and Marker 2 are used for receiving of detailed information about the signal under them.

NOTE: If the signal (which is hooked to the marker) is not visible, then the marker will not show any information.

Marker 1 Follows Mouse – By applying this function, Marker 1 will follow the movement of the mouse cursor, without the need to drag the Marker in order for the measurements to be visualized. Unlike Marker 1, Marker 2 does not depend on this option and is controlled by dragging.

Show Marker Balloons – displays information about the specific signal directly at the intersection point with the marker. If the option is disabled, the balloon will not appear, but the information will be visible in the information bar above the graph.

Delta X, Y represents the absolute difference between Marker 1 and Marker 2 along the X and Y axis and will be visualized in the information bar, only when both markers are enabled.

Other

File Start Markers – The beginning of each log file is marked with a vertical line. When pointing with the mouse cursor on the square placed on the top of the File Start Markers the file name will be displayed.

Connect File Gaps – the gaps between the files will be linked. Generally, they are negligible and very difficult to detect with the unaided eye.

Print button – used for printing of the currently displayed on the graph measurements. For further information on the print capabilities refer to “Print Capabilities” on page 105.

Settings button – opens a tab with settings applied to all options from “Right-side options/selectors Graph”.
Log View - GPS

This function is supported by:

This section of the DEVA Device Manager is used for visualizing of the data from the log measurements of the signal, presented as a graphic, located on a map. The graph is formed by examining points which follow a certain sequence and forming the resultant “travel path”.

Point Selection

Since the graph is compound by linked together signal points, each point could be analyzed on an individual basis. In order for this to happen, the following steps should be completed:

1. Choose the part of the graph to be analyzed;
2. Zoom in the map so that the points could be clearly visible;
3. Using the mouse, select the point to be examined;
4. Once the point is selected the corresponding information will be displayed.

The available Information is interpreted on two levels:

A) On the map, as a balloon in the upper left corner - only the basic parameters for GPS location, frequency, PI / CALL and the value of the selected parameter (signal) are listed.

B) Underneath the map in the following sections:

- Marked Points – contains a list of the marked points. The currently selected point will be displayed;
- Main – the basic parameters for GPS location, frequency, PI / CALL and the value of the selected parameter (signal) are listed;
- Signal [Variant] – contains information about all available parameters at this point of the graph. The selected Variant is written in the square brackets;

- RDS – (if available) information for basic RDS parameters (see “RDS” on page 38);

- AF Scan – (if available) information about the scanned Alternative Frequencies (AF).

C) Visible Range – This selector encompasses the time span of all points. Only the points between the selected start and end times are visualized.
Google Earth

DEVA Device Manager is a Google Earth compatible tool for visualization of the collected FM Radio Measurements. Once a campaign is finalized, the collected files could be converted into KMZ format (using the “Save as” button and then opened in Google Earth) or automatically visualized in Google Earth via the relevant button.

PLEASE NOTE that in order “Google Earth” button to be used, the Google Earth application should be installed on your computer.

![Google Earth Image](image)

HAVE IN MIND that upon pressing the Google Earth button, or Save As only the chosen PI/Freq and Signal currently depicted on the map will be visualized in Google Earth or saved in a file for future analysis.
Events
All events occurred during the campaign are listed in this section of the Software.
Right-side options/selectors GPS

Campaign Selector

Used for selecting of a campaign to be visualized (from the existing ones). There are two types of campaigns to choose from – PI and Frequency. Except for the existing campaigns, the options All or Nothing could also be specified.

Events

Used for selecting of the events to be depicted on the map and their color representation.

Signals

This selects the signal that will be depicted on the map. Each signal has a predefined minimum and maximum strength. Only the middle signal strength could be user-defined. The color representation for minimum, maximum and middle signal strength could be modified. Together the color representations of the signals form the so-called Color gradient.

When a point of the signal is visualized, the color depends on its representation within the boundary of the gradient. Thus, only with a quick look at the map, the “hot” areas of the signal could be detected.

Point of the Signal can be visualized in Gradient or Striped mode, with up to 32 Color Stop points.

Signal Variants

The variation of the signal to be displayed.

Zoom Control

The Graph could be fitted automatically via “Auto Fit”, options – Fit All or Fit visible only. Using the relevant buttons, the graph could be zoomed in/out or centered. Also, map zooming and moving can be made with the left and middle mouse buttons.
Refine

Additional options for reducing of the points and the formation of the signal path.

Minimum Stack Distance – If the distance between two points is less than the one that is set, these two points will be converted into one.

Minimum Split Distance – If the time between two points is greater than the one that is set, the covered distance between these two points is considered as unknown. The first point is regarded as the end of the present path and the second as a starting point of the next one.

Map Appearance

Map Layer Visible – The map could be turned off and the measurements visualized on a white background.

Map Layer Grayscale – will grayscale the map, allowing easy reading of the current condition and position of the visualized measurements.

Show Map Center – shows/hides the dotted lines used for indicating the map center.

Map Type – Used for customizing of the appearance of the map. The following options are available: Street, Terrain, Satellite.

Path Layer Visible – shows/hides the formed signal path.

Other

Settings button – opens a tab with settings applied to all options from “Right-side options/selectors GPS”.
Log Analyzer

The Log Analyzer Window is supported for DB4004 logs only. Based on the information gathered from the monitoring device, the software can produce statistics for the period of time that they cover. Three types of statistics are available - Cumulative, Dispersive and Pie.

How to use Log Analyzer

Once the files to be analyzed are chosen in section Filter (1), the [Analyze All] button should be pressed (2). Upon processing the files, the Log Analyzer window will appear.
On the right side of the window is placed a constant section that contains the following options and information:

Source Device – name of the device and serial number.

Date Created – date and time of the Log Analyzer statistics generated;

Frequency – During Logger mode, the DB4004 can gather information for up to 50 frequencies. The drop-down menu allows you to change the frequencies analyzed. The interpretation on the left will be changed accordingly.

- **Channels found** – the different channels found during the observation will be listed here.
- **Samples Analyzed** – number of samples from Log files analyzed.
- **From Date/ To Date** – time period of the analyzed Log files.
- **Total Time** - time period of the analyzed Log files. (Absolute time between From and To Date)
- **Total Utilized Time** - total hours/time of usage.
- **Observed Parameter** – During Logger mode, the DB4004 gathers information for different
parameters - RF, MPX, MPX Power, Pilot, RDS, Left and Right Audio. The drop-down menu allows you to change the parameters. The interpretation on the left will be changed accordingly.

Parameter Variant – The drop-down menu allows you to choose among Average, Minimum and Maximum variant of representation of the Observed Parameter.

Minimum – The minimum value obtained during the Total Time. The measurement unit changes depending on the selected Observed Parameter.

Maximum – The maximum value obtained during the Total Time. The measurement unit changes depending on the selected Observed Parameter.

Threshold – Allows a user-defined threshold based on which the calculations for the statistics will be made. Below this option is a report for the percentage correlation of the observation time during which the Observed Parameter has been below or above the specified threshold.

Ignore Counters Below – allows all cumulative counters, below certain value, to be ignored.

Ignored Counters – shows the ignored counters in accordance with the above setting.

[Print] – will print all three statistics.

[Save] – allows the Log Analyzer statistics to be saved for future analysis. The file is stored in (*.dla) format.

[Load] – allows (*.dla) files to be uploaded and analyzed.
Types of interpretations

1. Pie - this statistic is based on the cumulative interpretation. It analyzes the quality of service. The green color shows the percentage statistical time during which the transmitter is working properly. In red is shown statistical time during which the transmitter has poor performance - could be damaged or disconnected for maintenance;
2. Cumulative and Dispersive – primary statistics, the basis of Pie statistics.

In these types of statistics, markers to ease the reading of the parameters is also available. To enable the option click on Show Marker. If selected, Snap Marker will “stick” the marker only at the actual statistical point, otherwise marker value will be interpolated between two neighboring actual points.
Main Application Settings

GENERAL

Perform on Connection Double-Click – The following options are available:
• View and Connect;
• Edit;
• View.

Data Module Maintenance – The general Maintenance settings are made through this section. All parameters could be set according to your preferences.

Minimize Software to System Tray – this option is enabled by default. If you do not want to use it, disable the function with a click on the check box.
This section gives you the opportunity to alter the look of the Map section placed in the main application window.

Layout
- The Map could be situated on the bottom or Right part of the screen

Appearance
- Selecting the **Grayscale** option check box, will grayscale the map allowing easy monitoring of the current condition and position of the devices.
- **Show Map Center** – shows/hides the dotted lines used for indicating the map center.
- **Hide names** – The device’s names could be made visible or not, by choosing the corresponding check box.

Type
This option is available only when the chosen Provider is “Google Earth”. Three types of Map visualization are utilized:
- Street map
- Terrain map
- Satellite map

Provider
Depending on the requirements the map could be user-defined, or could not be used at all. Custom image may be added using the “Add” button – all types of images are supported. The currently employed user-defined map could be obliterated using the “Clear” button.

In addition to Google Maps, Internet Map option allows the chinese map interface equivalent Baidu to be used.
LOCAL IP LEASE

IP Poll 1st addresses for Local Connections and Subnet Mask are defined through this section.

ATTENTION: In order for the values to take effect the program should be restarted.

NOTE: If you experience any difficulties contact your network administrator.
The managed network devices are polled periodically to synchronize the device status with the DEVA Device Manager. The Polling interval is set at 5 sec and can be changed by the user.

The UPnP Discovery feature is enabled by default but can be disabled by the user. When the UPnP function is enabled, DEVA Device Manager will find and add to the Local Connections List automatically all supported devices connected to the same network as your PC through USB or LAN. The device should be with activated UPnP in order to be discovered by the DEVA Device Manager.

When the Device Storage reaches 50%, the Software will make an automatic notification. This value could be modified by the user.
DEVA Device Manager Software gives you the opportunity to choose among several conditions under which the downloading process can be started:

- Upon Startup;
- Immediately after activating a Connection;
- Downloading at predefined periods of time;
- Downloading at exact time of the day.

The downloaded files can be automatically deleted from the device by selecting “Delete received Logs from Device” option.

Using “Do not download Logs older than” option will guarantee you that Log files older than the preferred will not be downloaded.

Another great option is that the received Log files could be saved in a specified folder. In order to enable the function click on the corresponding check box and select the preferred folder by clicking on the corresponding button.
ANTENNA PROFILES

This tab allows the user to create and save for future usage different Antenna Profiles. There are two types of antenna profiles - **Flat Factor** or **Factor by Frequency**. While in Flat Factor, the factor value is the same for the entire frequency range, in the Factor by Frequency type, the values can be set particularly for each frequency (factors for intermediate frequencies are interpolated linearly).

Once a list of profiles is created, it can be [Exported] and [Imported] in other computer using the same DEVA Device Manager software.

How to add a new Antenna profile

1. Press the plus button to add a new antenna profile;

2. Then in section Antenna Profile, select from the drop down menu one of the following options - Flat Factor or Factor by Frequency.

 Depending on the chosen antenna factor, the settings to be applied are different and are explained in details below.
Flat Factor

1. Press the [+] button to add a new antenna profile;
2. Then in section Antenna Profile select Flat Factor;
3. Specify name of the Antenna Profile;
4. Specify the factor in dB/m.
5. Press [OK] to save the changes.

Factor by Frequency

1. Press the [+] button to add a new antenna profile;
2. Then in section Antenna Profile select Factor by Frequency;
3. Specify name of the Antenna Profile;
4. Press the [Add] button;
5. Specify frequency
6. Specify the factor in dB/m.
7. Press [OK] to save the changes.
The Audio Manager is designated to handle the audio stream flow from the transmitting device and redirect it to a user-selected audio player (or the default player in Windows).

Stream Port – The port to be used in order for the audio stream to be redirected.

Use Default Player – System’s assigned default player will be used.

Use Selected Player – In order for this function to be applied, the Player’s source directory and executable should be specified.
The system default settings could be used for displaying of the date and time or could be customized. DEVA Device Manager utilizes several types of visualization, depending on your requirements.

NOTE: These settings are not generally applicable. They are used only when it is appropriate.
SECURITY

The Master Password protects stored passwords used for an access to remote devices. If you share a computer with anyone, it is recommended that you use a master password.

If you have set a Master password upon DEVA Device Manager’s first activation, this section could be used for changing of the password.

NOTE: Please make sure you remember the Master Password you have set. If due to any reason you forget your Master Password, contact us for detailed instructions on the reset procedure.
DB44 Device Control Window

After the needed parameters are defined, the DB44 will appear in the Device List and on the Map. There are two options of entering the device:
1. Select the preferred device and click on the “View Device” button
2. Double click on the device.

This will automatically open the device control interface:

Unlike the other devices controlled via the DEVA Device Manager Software, the DB44 is controlled via its built-in WEB interface. For further information on the features and available settings of DB44, please refer to the complete user manual which can be found on our website - www.devabroadcast.com/downloads
DB45 Device Control Window

After the needed parameters are defined, the DB45 will appear in the Device List and on the Map. There are two options of entering the device:

1. Select the preferred device and click on the “View Device” button 📜
2. Double click on the device.

This will automatically open the device control interface:

Unlike the other devices controlled via the DEVA Device Manager Software, the DB45 is controlled via its built-in WEB interface. For further information on the features and available settings of DB45, please refer to the complete user manual which can be found on our website - www.devabroadcast.com/downloads
NOTE: The Software screenshots used for the purposes of this manual, unless clearly indicated, are from DB4004 - DSP-based FM Radio Monitoring Receiver.

MAIN SCREEN

The appearance of the Main Screen differs depending on the device’s functions and is initial window for all controlled devices via DEV A Device Manager Software.

- DB4004 - DSP-based FM Radio Monitoring Receiver;
- DB7000 – FM Radio Re-Broadcast Receiver;
- DB7007 – FM Radio Re-Broadcast Receiver with Built-in IP Audio & MP3 Backup Players

The Main Screen shows all mandatory parameters represented as LED readings. The visualized indicators are user defined and under each of them are shown three values for the period since the last frequency change:

Max – the maximum peak values;
Now – the current measured value;
Min – the minimum peak values.

NOTE: The content of this window differs depending on the chosen application, but the bottom section remains the same.
The **Settings** button is used for customizing all applicable device and Control Window settings (see “Device Control Window Settings” on page 97).

Print – used for printing of the currently visualized information. Depending on the selected tab the function could be inactive (see “Print Capabilities” on page 105).

The **Listen** button provides the user with an easy and instant way to hear the currently selected station. When clicked, the Listen Button will open a player which will reproduce the received signal.

Connect/Disconnect button – used for connection with the device through the selected connection from the drop-down menu (placed in front of the button).

The following functions (buttons) are active only for:
- DB4004 - DSP-based FM Radio Monitoring Receiver;

You can choose between two antenna inputs and easily select the preferred audio frequency by using the left and right arrow buttons placed on the left part of the screen.

Using the interactive left and right arrows you can choose the preferred station.

The frequency step is defined in the device’s settings menu and can be changed via DEVA Device Manager.

NOTE: The frequency step can be set/changed via DEVA Device Manager only if you are logged in as an Administrator via the “Settings” button (see “Device Control Window Settings” on page 97).

SET – Once the preferred Frequency is written, the **SET** button should be pressed in order for the changes to take place.
GRAPHS

This function is supported by:

• DB4004 - DSP-based FM Radio Monitoring Receiver;
• Radio Explorer II – Mobile FM Radio Analyzer.

This screen represents all mandatory parameters over the selected time span.

All parameters have own color representation and measurement units, visible besides the graph. Having in mind that visual perception differs from person to person the colors could be changed upon clicking on the square button, placed in front of parameter’s name.

According to your needs the parameters listed on the right part of the dialog window, can be visible or hidden. Click on corresponding check-box in order for a parameter to be displayed. (see “Device Control Window Settings” on page 97)

Freeze is a button with double usage:

• Freeze – freezes all screen readings until UnFreeze button is applied;
• UnFreeze – unfreezes all screen readings.
MPX

This function is supported by:
- DB4004 - DSP-based FM Radio Monitoring Receiver;

The graphic represents the MPX Deviation overshoot (in percent) over time. Standard overshoot is measured at 75 kHz and is indicated below the graphic. User-defined frequency can be selected by moving vertical marker along the horizontal scale. Overshoot will be indicated at the cross-point with the horizontal dotted line.

Above the graphic is places section containing information for the position of the Marker, Total Deviation, Minimum/Maximum/Average value of the MPX Power and the measured Multipath. The measurement duration time is also available. The information is constantly updated and is intended to ease the reading of the obtained measurements.

To change between Total and Positive/Negative deviation, you can enable the desired visualization in section Representation, placed on the right side of the screen.

The visual representation of the vertical scale can be changed depending on the preferences from section Vertical Scale, placed in the right part of the screen.
Another great feature is that depending on your current needs the MPX Deviation graph could easily visualize the Total or Pos/Neg Deviation by selecting one of the options.

Above the graphic is placed section containing information for the position of the Pos and Neg Marker, Negative and Positive deviation, Minimum/Maximum/Average value of the MPX Power and the measured Multipath. The measurement duration time is also available. The information is constantly updated and is intended to ease the reading of the obtained measurements.

Information about the Measure duration, Positive and Negative Deviation is constantly written (and changing) on the bottom of the tab.

NOTE: The overshoot thresholds could be managed through the Settings menu. (see “Device Control Window Settings” on page 97)
The modulation power is a relative power of the MPX signal averaged over 60 seconds. 0 dBr corresponds to an average power of a signal equivalent to the power of a sinusoidal tone which causes a peak deviation of 19 kHz. Intensive audio dynamics compression as well as increasing overall peak deviation causes the modulation power to rise.
BANDSCAN

This function is supported by:
- DB4004 - DSP-based FM Radio Monitoring Receiver;
- DB7000 – FM Radio Re-Broadcast Receiver;
- DB7007 – FM Radio Re-Broadcast Receiver with Built-in IP Audio & MP3 Backup Players

The BandScan application utilizes several types of BandScan, depending on the preferred frequency step. The bandscanning range could be customized by setting the start and end frequency of the scan. Once you have set the frequency step and start/end frequency, the start button should be pressed in order for the BandScan process to be initiated.

A toolbar facilitating the usage of the BandScan mode and enabling its customizing is situated on the right part of the screen and contains the following sections:

Section “Markers” enables or disables the used auxiliary markers. Moving the Marker (MKR) along the Band Spectrum will display the level of the frequency under the marker. The Reference level (REF) defines the bottom of the analyzed zone.

As the result of the changed Reference level, peak balloons containing information about the peak will be displayed. The data is constantly updated according to the position of the REF marker.

The balloons could be visible or not by enabling/disabling the relevant function in the section. The user can choose between several types of peak find methods:
- Highest peak – The highest peak within the defined zone will be visualized;
- All peaks – all peaks within the defined zone will be visualized;
- Every 100 kHz – Nevertheless of the selected Reference level, the peaks will be visualized at every 100 kHz.

NOTE: Information for the current Markers (chosen reference level, frequency and corresponding level) can be found in the upper left corner above the diagram.

Section “Zoom Control” – The Graph could be fitted automatically via “Auto Fit”. You can choose between two modes of visualizing – Predefined and Extremes. Using the relevant buttons the BandScan Graph could be zoomed in/out or centered. The X and Y span could also be managed in accordance with your requirements.
OSCILLOSCOPE

This function is supported by:
• DB4004 - DSP-based FM Radio Monitoring Receiver;

Oscilloscope mode is used to visualize the most important signals participating in the process of demodulating and stereo decoding. This mode represents the observed signal change over time. A toolbar enabling customizing of the Oscilloscope function is situated on the right part of the screen.

“Signal” section – The signal source to be visualized is selected through the drop down menu. The monitoring channels is also set through this section.

“Markers” section enables or disables the used auxiliary markers and changes their measurement pertain.

“Zoom Control” section – refer to “Zoom Control” on page 71.
FFT (FAST FOURIER TRANSFORM)

This function is supported by:
• DB4004 - DSP-based FM Radio Monitoring Receiver;

The Fast Fourier Transform (FFT) is the Fourier Transform of a block of time data samples. It represents the frequency decomposition of the time signal. The signal source to be calculated and visualized is chosen from the Signal section placed on the right part of the screen.

The FFT based measurements are subject to errors from an effect known as spectral leakage, which occurs when the FFT is computed from of uninterrupted data block. This problem could be minimized by applying the appropriate windowing function. Depending on the specific application, the appropriate window function should be applied. Errors may be introduced in the FFT amplitude, frequency or overall shape of the spectrum if the windowing is not correctly applied.

The window function can be managed through the relevant drop-down menu. The available windows and their features are given below. This table can be used to choose the best windowing function for each application.

<table>
<thead>
<tr>
<th>Window</th>
<th>Best type for these Signal Types</th>
<th>Frequency Resolution</th>
<th>Spectral Leakage</th>
<th>Amplitude Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>Transient & Synchronous Sampling</td>
<td>Best</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Barlett</td>
<td>Random</td>
<td>Good</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>Blackman</td>
<td>Random or mixed</td>
<td>Poor</td>
<td>Best</td>
<td>Good</td>
</tr>
<tr>
<td>Hamming</td>
<td>Random</td>
<td>Good</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>Von Hann</td>
<td>Random</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Flat-top</td>
<td>Sinusoids</td>
<td>Poor</td>
<td>Good</td>
<td>Best</td>
</tr>
</tbody>
</table>

“Average” – the sound filtering step is defined from here.
“Markers” section – enable/disable the Markers.
“Zoom Control” section – refer to “Zoom Control” on page 71.
STEREO MEASURE

This function is supported by:

- DB4004 - DSP-based FM Radio Monitoring Receiver;

The graphical representation of the phase relations between Left and Right audio channels is illustrated above. This graphic is used to assess mono compatibility of the audio material as well as visualizing the stereo image or balance of the material. Experienced users of this type of display can easily detect the differences between mono signals, “pan-pot” stereo and true stereo signals. The audio levels for both left and right channels are given in kHz.

The Stereo measure signal visualization can be changed according the visual perception of the user. Using the drop down menu placed on the right part of the screen Cloud, Lissajous or Star – shaped visualization could be chosen.

The hull could be enabled or disabled by selecting (or not) the relevant check box. The Hull cloud traces the peaks reached by the L and R signals. The signals are constantly changing thus the Hull also changes. Visually the Hull expands like a balloon until one point at which it almost stops changing (usually when the highest signal is reached). The Reset button will delete the maximum values and the integration process will begin again.
RDS

This function is supported by:

- DB4004 - DSP-based FM Radio Monitoring Receiver;
- DB7000 – FM Radio Re-Broadcast Receiver;
- DB7007 – FM Radio Re-Broadcast Receiver with Built-in IP Audio & MP3 Backup Players

All main RDS features as PS, Radio Texts, PI, PTY, MS, TP, TA, DI and Alternative Frequency are visualized in the “Main” section of the RDS tab. For further information on all analyzed RDS groups refer to “APPENDIX B.2”.

Group Flow – the sequence of the received RDS groups is represented here as a list, allowing easy monitoring of the received groups.

Intended to observe the channel quality a BER Indicator with graphics, showing the history of the BER quantities, is placed on the right bottom part of the screen.

Group detector - this function is used for reading of existing groups and is located on the bottom part of the screen. The corresponding LED illuminates in green when group presence is detected. This feature grants the user access to information about the transmitted groups and their appropriate frequency. In case more information is required, it can be found in the tabs where all information about the selected group is analyzed.

NOTE: The decoded Groups and ODA applications may differ depending on the currently connected device.
This function is supported by:

- DB4004 - DSP-based FM Radio Monitoring Receiver;
- DB7000 – FM Radio Re-Broadcast Receiver;
- DB7007 – FM Radio Re-Broadcast Receiver with Built-in IP Audio & MP3 Backup Players

This tab contains information about the current status of the connected device. The contained information is being updated constantly with the supplied from the device data.

As depicted below, the contained information differs depending on the currently connected device.
DB7000 - Status Screen

Radio Explorer II - Status Screen
DB7007 - Status Screen
This function is supported by:

- DB4004 - DSP-based FM Radio Monitoring Receiver;
- DB7000 – FM Radio Re-Broadcast Receiver;

Here are listed all Device System Events, as well as the Alarms generated (if the currently connected device supports Alarm function).
This function is supported by:

- DB7007 – FM Radio Re-Broadcast Receiver with Built-in IP Audio & MP3 Backup Players

This tab allows the user to monitor the currently playing audio sources of DB7007, and if need be to manually change the source in use. The backup sources priority is user-defined and can be set through the WEB Interface and front panel menu. The needed settings to the audio sources are applied via the WEB Interface, front panel menu and section Settings> Device and then Main Station, Backup Station and Backup submenu of the DEVA Device Manager Software.

If the audio from the main source disappears, the DB7007 will automatically switch to the first backup source; if it also fails, the unit will switch to the second, etc. Once a source with higher priority is restored, the unit will switch back to it.

Depending on the used audio source the Backup window will contain essential information for the condition of the audio signal currently broadcasted. Depicted below are the different states of the section:
Backup station

IP Audio Client
MP3 files upload via FTP

DB7007 has a built-in backup audio file player. It plays tracks from SD Card storage which are uploaded over the FTP. All backup audio files must be located in the folder named Audio (that could be found in the root of the SD card). Subfolders are not allowed. The playlist file, if used, must be named playlist.m3u.

For detailed information how an FTP connection with the device can be established, please refer to “How a connection with and FTP Server can be made” on page 95.
GPS

This function is supported by:

Satellites in View:
This section contains information about satellites in view. The LED indicators show the reception quality for every satellite. The number beneath every LED is Satellite ID.

Utilized Satellites and Fixation:
- Fix Mode: Fix Mode is a direct result from satellites in view, as well as their position in the sky.
- Satellites Used: Satellites included in Fix and DOP (Dilution of Precision) calculation.
- PDOP (Position Dilution of Precision), HDOP (Horizontal Dilution of Precision), VDOP (Vertical Dilution of Precision) - A Root Mean Square (RMS) measure of the effects that any given position solution geometry has on position errors. Geometry effects may be assessed in the local horizontal (HDOP), local vertical (VDOP) or three-dimensional position (PDOP) for example.
Coordinates, Time, Speed and Accuracy:
This section contains information about the position attributes - Latitude, Longitude, Date, Time, Altitude, Accuracy, Speed and Course. The readings are “Fix Mode” dependent i.e. better Fixation provides more accurate values.

The GPS Speed is measured in knots (standard value) which may be automatically converted into miles or kilometers by choosing the relevant value using the drop-down menu.

Sky View is an alternative representation of “Satellites in View”. Every satellite is represented as a 2D point in space, according to Elevation, Azimuth and signal quality of the satellite. Sky View gives a general idea of how satellites are scattered through the visible sky. The bigger the distance better the Dilution of Precision. Satellites with insufficient signal quality are colored in red.

NOTE: Azimuth (measured in degrees from 0° (North) to 359°) and elevation (measured in degrees from 0° to 90°) are angles used to define the apparent position of an object in the sky, relative to a specific observation point.
PI and Logger mode campaigns

RDS PI / RBDS CALL CAMPAIGN - PI CAMPAIGN

This type of campaign is supported only by Radio Explorer II – Mobile FM Radio Analyzer.

• The **PI campaign** is suitable solution when monitoring of an entire network is made. In order for a PI/CALL campaign to be made, the channels you would like to monitor must have RDS PI/ RBDS CALL signs.

• This campaign type is very convenient when it is not preliminary known which transmitters will be in the range of the survey, but the PI or CALL signs of the stations are available.

• When used to monitor an entire network, the PI campaign allows you to set-up the PI/CALL signs once and use them in campaigns for unlimited time without the need of changing them depending on the region of survey.

• Allows you to identify the zones of switch over from one transmitter to another.

LOGGER MODE

This type of campaign is supported by both - DB4004 - DSP-based FM Radio Monitoring Receiver and Radio Explorer II – Mobile FM Radio Analyzer.

• The **Logger mode** is suitable solution when monitoring of a preliminary identified frequencies should be made.

• This campaign type is very convenient when a survey for the coverage of one transmitter in a particular city or region should be made.

• Appropriate when several transmitters in a relatively small region should be monitored and all channels of interest are broadcasted at the same time/simultaneously.

Upon completion of the campaign, the LOG files can be downloaded via a standard FTP client or through the DEVA Device Manager Software. For detailed information on how to download the files via:

- FTP - [refer to “Download LOG files via FTP” on page 95](#)
- DEVA Device Manager Software - [refer to “Download LOG files via Software” on page 92](#)
USEFUL INFORMATION FOR THE RADIO EXPLORER II USERS

Differences between PI campaign and Logger Mode.
Which type of campaign should I choose?

Designed for signal surveillance on the field where the listeners are, all that is needed is a vehicle and Radio Explorer II. There are two campaign modes:

1. **Logger mode** – Through this section of the WEB Interface, up to fifty radio frequencies could be chosen and monitored, by applying the needed settings. When the desired adjustments are made, Radio Explorer II will monitor all of the selected frequencies at regular intervals. All of the collected information is accessible through the built-in FTP Server;

2. **RDS PI / RBDS Call campaign** – Radio Explorer II can monitor up to ten stations at regular intervals. When used in this mode, Radio Explorer II will automatically detect the used frequency. While the campaign is running, the chosen stations will be monitored. Radio Explorer II will automatically switch over between the variable frequencies during movement - just as the car radio of your listeners. It is necessary that the campaign frequencies/channels and supplemental Radio Explorer II settings be pre configured before starting a campaign. No additional adjustments or settings will be required, except for the occasion when the campaign is to be stopped.
Important recommendations when acquisition time is set

Acquisition time defines the time between the examining points. Meaning that if the acquisition time is set to 10 seconds, the Radio Explorer II will mark a point on the map each 10th second of the campaign. Having in mind that the device will scan the channels preset after preset, the driving speed should be carefully considered.

Below is a table with the expected distance between the measurements of a particular point/frequency, depending on the speed and number of monitored channels, when the device is used in Logger Mode. Please note that the cited parameters are approximate and depend on the re-tuning time between the channels, and the overall configuration. As it can be seen from the table, the time period for two channels is more than two times bigger than the one needed for 1 channel as time for re-tuning is also added.

In PI campaign there are valid and not valid RF levels and CALL signs that have influence on the distance between the measurement points, hence approximate distance cannot be accurately presumed.

<table>
<thead>
<tr>
<th>Number of monitored channels</th>
<th>Acquisition time</th>
<th>Speed 50km/h 31mph</th>
<th>Speed 90km/h 56mph</th>
<th>Speed 120km/h 75mph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m</td>
<td>feet</td>
<td>m</td>
</tr>
<tr>
<td>1</td>
<td>5 seconds</td>
<td>69</td>
<td>226</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>10 seconds</td>
<td>137</td>
<td>449</td>
<td>252</td>
</tr>
<tr>
<td>2</td>
<td>5 seconds</td>
<td>140</td>
<td>459</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>10 seconds</td>
<td>276</td>
<td>906</td>
<td>508</td>
</tr>
<tr>
<td>3</td>
<td>5 seconds</td>
<td>202</td>
<td>663</td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>10 seconds</td>
<td>413</td>
<td>1355</td>
<td>761</td>
</tr>
<tr>
<td>4</td>
<td>5 seconds</td>
<td>273</td>
<td>896</td>
<td>509</td>
</tr>
<tr>
<td></td>
<td>10 seconds</td>
<td>551</td>
<td>1808</td>
<td>1015</td>
</tr>
<tr>
<td>5</td>
<td>5 seconds</td>
<td>345</td>
<td>1132</td>
<td>638</td>
</tr>
<tr>
<td></td>
<td>10 seconds</td>
<td>692</td>
<td>2270</td>
<td>1265</td>
</tr>
<tr>
<td>6</td>
<td>5 seconds</td>
<td>412</td>
<td>1352</td>
<td>760</td>
</tr>
<tr>
<td></td>
<td>10 seconds</td>
<td>830</td>
<td>2723</td>
<td>1512</td>
</tr>
<tr>
<td>7</td>
<td>5 seconds</td>
<td>480</td>
<td>1575</td>
<td>890</td>
</tr>
<tr>
<td></td>
<td>10 seconds</td>
<td>964</td>
<td>3163</td>
<td>1765</td>
</tr>
<tr>
<td>8</td>
<td>5 seconds</td>
<td>552</td>
<td>1811</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>10 seconds</td>
<td>1105</td>
<td>3625</td>
<td>2020</td>
</tr>
<tr>
<td>9</td>
<td>5 seconds</td>
<td>622</td>
<td>2041</td>
<td>1142</td>
</tr>
<tr>
<td></td>
<td>10 seconds</td>
<td>1242</td>
<td>4075</td>
<td>2270</td>
</tr>
<tr>
<td>10</td>
<td>5 seconds</td>
<td>692</td>
<td>2270</td>
<td>1270</td>
</tr>
<tr>
<td></td>
<td>10 seconds</td>
<td>1395</td>
<td>4577</td>
<td>2535</td>
</tr>
</tbody>
</table>
HOW TO START A CAMPAIGN?

IMPORTANT: Prior to the set-up procedure, you will have to note that the campaigns (PI and Logger) cannot be performed simultaneously. The PI campaign is with higher priority, thus in order for a Logger mode campaign to be performed you will have to make sure that the PI Campaign is disabled.

Prior to applying any settings, a connection to the device via the DEVA Device Manager Software should be made.

Logger Mode

This type of campaign is supported by both - DB4004 - DSP-based FM Radio Monitoring Receiver and Radio Explorer II – Mobile FM Radio Analyzer.

1. Enter the device window and go to “Logger” tab;
2. Set the Logger mode start time delay via the ‘Logger Mode’ drop-down menu placed at the top left corner;
3. Click on one of the channels;
4. A new dialog window will appear. Set name and frequency parameters;
5. In order for a channel to be included in the campaign, “Antenna 1” should be selected from the “Active” drop-down menu. To exclude a station from the campaign select the “Disable” option;
6. Change the Acquisition time as per your preferences. We recommend setting it to 10 seconds;
7. Press the [OK] button to save the applied changes;
8. Steps from 2 to 7 should be applied for each of the channels to be monitored. Once all Channels are set you can proceed to the last step;
9. Disconnect the device from the local network connection and wait for the campaign to be commenced.

PI/CALL Campaign

This type of campaign is supported only by Radio Explorer II – Mobile FM Radio Analyzer.

1. Enter the device window and go to “PI Campaign” tab;
2. Set the PI Campaign start time delay via the ‘PI Campaign Mode’ drop-down menu placed at the top left corner;
3. Click on a PI Channel to be set;
4. A new dialog window will appear. Set the following parameters for each of the stations you would like to observe – PI/CALL, Name of the station and Acquisition time (we recommend setting it to 10 seconds);
5. In order for a channel to be included in the campaign, “Antenna 1” should be selected from
the “Active” drop-down menu. To exclude a station from the campaign select the “Disable”
option;
6. Press the [OK] button to save the applied changes;
7. Steps from 2 to 6 should be applied for each of the channels to be monitored. Once all PI
Channels are set you can proceed to the last step;
8. Disconnect the device from the local network connection and wait for the campaign to be
commenced.
Download LOG files via DEVA Device Manager Software

In order for the collected LOG files to be downloaded, the device connection should be made permanent. Below is a step-by-step explanation of the process.

Please have in mind that the device used for the purposes of demonstration is DB4004 DSP-based FM Radio Monitoring Receiver intended for stationary observation which also collects LOG files. The LOG download procedure for DB4004 and Radio Explorer II is identical.

Also, depending on the preferred communication method, under local connections the device shall be connected via USB or UPnP.

1. Right click on the device listed in the Local Connections.

 ![Diagram of step 1](image1)

2. Make the connection permanent.

 ![Diagram of step 2](image2)
(3) The new connection will be added in the Devices list. Select the connection, and as depicted below, press the “Download Logs” button.

(4) Once this is done, an icon indicating that the LOGS are downloading will appear (as depicted below). Then, press the “LOG Manager” button.

(5) The current status and progress of all connections marked with “Download LOG’s” is displayed.

The plus sign placed in front of the connection can be expanded in order for further information about the download status to be displayed. On the bottom side it is placed the “Stop Download” button used for stopping of the selected download.
(6) For information on how to visualize the collected information, please refer to “Viewer - Filter” on page 35.
Download LOG files via FTP - How a connection with and FTP Server can be made

In order for a connection to be established the following setting should be applied:

FTP Server Settings

The built-in FTP Server has four important parameters that should be configured: Command Port, Data Port, User name and Password. These parameters are to be used in the FTP client’s connection configuration. Further information on how to change the FTP Server’s settings and their respective default values can be found in the device’s User manual.

WE RECOMMEND the usage of FileZilla. This is a widespread open source software distributed free of charge, hence available for downloading from the Internet.

NOTE: The FTP Server can manage only one connection at a time. The FTP Server works in Passive mode. Hence, the FTP Client should also be set in passive mode.

IP Router and Port Translation Settings

If the connection to the device is made through a Network address translation (NAT) router or firewall, the port forwarding feature of the router should be configured. The port forwarding is usually set in the firewall section of the router’s menu. As each router has different port forwarding procedure, we recommend you to refer to its complete manual. To allow proper data flow through the router, the FTP Command and FTP Data ports should be open.

NOTE: The FTP port numbers to be used in the port forwarding feature configuration can be found in the device.
Example of FTP Client (FileZilla) Settings

In some cases, FileZilla’s “Quick connect” feature is not able to connect with the DEVA unit. That is why we recommend the device to be assigned in the program manually.

Enter the FTP Client and go to: File> Site manager> New Site. A dialog box requiring obligatory information about the device will appear. Fill in the needed information and press [OK].

Select “Transfer Settings” sub-menu and apply the settings as shown below:
A list of all visualized parameter readings is found on the left part of the screen. Using the UP and DOWN buttons (placed below the list), upon selection of a measurement, the current position of the parameter could be changed.

Having in mind that visual perception differs from person to person, the program offers options to alter the look of most of its parts.

LEDs visual appearances is managed via the “as LED” section. There are four types of visualization:

- Sharp
- Semi-Sharp
- Semi-Clear
- Clear

The selected LED representation of the parameter could be visible or not by selecting (or not) the corresponding check-box. The Grid color and Scale step could also be managed.

The Grid color could be changed upon clicking on the square button, referred to this option.

NOTE: Each parameter is managed independently i.e. settings applied to RF will not be referred to the other parameters.

“Thresholds” Section – In order for the visualized data to be read at a glance, the different values could be represented as color codes. A Threshold should be first selected in order its value and color to be edited. Once selected the new value should be written in the corresponding box. New Threshold is added via the “Add” button and deleted via the “Del” button.

“as Graphs” Section – The parameter appearance in the Graph tab (graph color and line width) is managed through here.

Upon completion, in order for the applied settings to take place, click on the “OK” button. If not click on “Cancel” or “Default”. The “Default” button could be used at any time of the work process if the parameter appearance should be reset to its factory defaults.
“Graphs” & “LED Display” sections - different visual appearances could be combined by the user in order the desired look to be achieved.
Color codes different from the default ones could be set using this tab of the Settings.
Color codes different from the default ones could be set using this tab of the Settings.
FFT

Color codes different from the default ones could be set using this tab of the Settings.
Color codes different from the default ones could be set using this tab of the Settings.
You can switch from RDS to RBDS mode via “RDS Mode” section. The preferred units for visualization of the MPX, PILOT and RDS could also be customized. “Use Device Settings” option will use the defined in the device settings.
A list of all available Device settings is found on the left-side of the menu. Depending on the currently connected device the settings are contextually different.

DEVA Device Manager provides you with protected access to the device settings. You can choose between two types of log in:

- As an ADMINISTRATOR— which will give you full control over the device’s settings;
- And as a USER log-in that will allow you to just monitor the device and choose different stations, but the SETTINGS bar remains locked.

NOTE: In order for the device access, to be enhanced, the default values could be modified only by the administrator.
Print Capabilities

The content, of the dialog window differs from tool to tool, but the functionality remains the same. Once the Print button is selected the following window will appear:

Select the printer from the Printer drop-down. If necessary, the Printer settings could be modified from the Setup button (paper size, orientation, etc.).

Print Range section – Only the selected pages will be printed.

Go To section – the currently previewed page can be changed.

Orientation section – the direction of the image is set through here or how it will print on a printer.

Output can be set to Monochrome (independently of printer capabilities) which will automatically convert the graphic(s) from color to monochrome.

Margins section allows predefining of the reserved white space around graphic(s). Click on the Minimal button will set margins to the minimum allowed values for the selected printer.

Show in Preview check box - shows/hides margins in preview as dotted lines (which will not be printed).

Header section - allows adding of user-defined which can be restored to default by Default button.

Once the desired properties are applied click on “Print” button to print the graphic.
PRODUCT REGISTRATION CARD

• All fields are required, or warranty registration is invalid and void

Your Company Name

Contact

Address Line 1

Address Line 2

City

State/Province ZIP/Postal Code

Country

E-mail Phone Fax

Which DEV A Broadcast Ltd. product did you purchase?

Product Serial #

Purchase date / / Installation date / / /

Your signature*

*Signing this warranty registration form you are stating that all the information provided to DEV A Broadcast Ltd. are truth and correct. DEV A Broadcast Ltd. declines any responsibility for the provided information that could result in an immediate loss of warranty for the above specified product(s).

Privacy statement: DEV A Broadcast Ltd. will not share the personal information you provide on this card with any other parties.
WARRANTY TERMS AND CONDITIONS

I. TERMS OF SALE: DEV A Broadcast Ltd. products are sold with an understanding of “full satisfaction”; that is, full credit or refund will be issued for products sold as new if returned to the point of purchase within 30 days following their receipt, provided that they are returned complete and in an “as received” condition.

II. CONDITIONS OF WARRANTY: The following terms apply unless amended in writing by DEV A Broadcast Ltd.
 A. The Warranty Registration Card supplied with this product must be completed and returned to DEV A Broadcast Ltd. within 10 days of delivery.
 B. This Warranty applies only to products sold “as new.” It is extended only to the original end-user and may not be transferred or assigned without prior written approval by DEV A Broadcast Ltd.
 C. This Warranty does not apply to damage caused by improper mains settings and/or power supply.
 D. This Warranty does not apply to damage caused by misuse, abuse, accident or neglect. This Warranty is voided by unauthorized attempts at repair or modification, or if the serial identification label has been removed or altered.

III. TERMS OF WARRANTY: DEV A Broadcast Ltd. products are warranted to be free from defects in materials and workmanship.
 A. Any discrepancies noted within TWO YEARS of the date of delivery will be repaired free of charge, or the equipment will be replaced with a new or remanufactured product at DEV A Broadcast Ltd. option.
 B. Parts and labor for factory repair required after the two-year Warranty period will be billed at prevailing prices and rates.

IV. RETURNING GOODS FOR FACTORY REPAIR:
 A. Equipment will not be accepted for Warranty or other repair without a Return Authorization (RA) number issued by DEV A Broadcast Ltd. prior to its return. An RA number may be obtained by calling the factory. The number should be prominently marked on the outside of the shipping carton.
 B. Equipment must be shipped prepaid to DEV A Broadcast Ltd.. Shipping charges will be reimbursed for valid Warranty claims. Damage sustained as a result of improper packing for return to the factory is not covered under terms of the Warranty and may occasion additional charges.
APPENDIX A

RDS: EUROPE VS AMERICA

European RDS has grown in use following initial adoption of the Standard. RDS is nearly universal throughout Europe; it is almost impossible to find a European FM broadcasting station that does not carry a radio data subcarrier.

The popularity of RDS in Europe is very much in contrast with initial reluctance on the part of US broadcasters to embrace this technology. This can be ascribed to material differences in broadcasting practices.

Almost without exception, FM broadcasting in the United States is ‘detached’ and independent - each station originates its own programming. America’s National Public Radio might be considered as an exception, though for most of the broadcast day even NPR stations originate, or at least schedule, their own programs.

Most of European broadcasting is similar to the concept of network radio that was common in the US prior to the 1950s. In Europe, a central program originator may have many transmitting facilities of modest power situated throughout the country, at several different frequencies to blanket a designated service area. The European disposition, toward lower-power transmitters can be found on the “local radio” level, as well.

The European concept of a service area equates to the US broadcaster’s market. The subtle difference between these designations further characterizes broadcasting practices and ethics. RDS benefits the European broadcaster through almost an altruistic endeavor to be of service to his listeners. The US broadcaster is marketing his programming and is primarily interested in how he can create additional revenue from RDS.

THE RDS SYSTEM

RDS is a digital data channel, transmitted as a low-level subcarrier above the range of the composite stereo program signal in the FM baseband. The data transmission (baud) rate is comparatively low, yet it is quite robust because of data redundancy and effective error correction.

It is not within the scope of this Manual to cover the details of RDS subcarrier coding and modulation. For this, the reader is directed to the Specification appropriate to his location either the CENELEC EN50067 Specification for Europe or the United States NRSC Specification. Since the Manual will deal with specific implication of RDS implemented with the DEVA Device Manager, it is assumed that the user is familiar with the RDS concept.
APPENDIX B.1

RDS APPLICATIONS SUPPORTED

Following is an alphabetical list of the RDS applications supported by DEVA Device Manager. The standardized RDS application abbreviation is followed by an expansion of the application name and a short explanation of the function.

AF
List of Alternative Frequencies: In order holes in the coverage area to be filled, list of all frequencies where identical program could be heard simultaneously can be included by the network broadcaster or one with low-power rebroadcast transmitters (translators). The RDS receiver (particularly the upscale car radio) constantly searches for the best signal that carries the same program. The radio will re-tune without noticeable interruption, when a better signal is found. The principal utility of this RDS function is with European radio networks and US stations with ‘translators.’

CT
Clock Time and date: Time and date codes should use Coordinated Universal Time (UTC) and Modified Julian Day (MJD). If MJD = 0, the receiver should not be updated. The listener, however, will not use this information directly and the conversion to local time and date will be made in the receiver’s circuitry. CT is used as time stamp by various RDS applications and thus it must be accurate.

DI
Decoder Information: This is one of several ‘flags’ that convey yes/no or other very basic data. This flag helps the receiver to indicate whether the broadcast is monaural or is transmitted in any of several methods of stereo or binaural broadcasting. As many as 16 encoding options may be accommodated! This is a rather esoteric function and, thus far, remains unused both in Europe and in the US.

ECC
Extended Country Code: RDS uses its own country codes. The first most significant bits of the PI code carry the RDS country code. The four bit coding structure only permits the definition of 15 different codes, 1 to F (hex). Since there are much more countries to be identified, some countries have to share the same code which does not permit unique identification. Hence there is the need to use the Extended Country Code which is transmitted in Variant 0 of Block 3 in type 1A groups and together with the country identification in bits b15 to b12 of the PI code render a unique combination. The ECC consists of eight bits.
EON
Enhanced Other Networks information: This feature can be used to update the information stored in a receiver about program services other than the one received. The alternative frequencies-PS name, Traffic Program and Traffic Announcement identification as well as Program Type and Program Item Number information can be transmitted for each other service. The relation to the corresponding program is established by means of the relevant Program Identification. Linkage information, consisting of four data elements, provides the means by which several program services may be treated by the receiver as a single service during times a common program is carried. Linkage information also provides a mechanism to signal an extended set of related services.

EWS
Emergency Warning System: The EWS is intended to provide coding for warning messages. These messages will be broadcasted only in case of emergency and will be evaluated by special receivers.

IH
In House application: This refers to data to be decoded only by the operator. Some examples noted are identification of transmission origin, remote switching of networks and paging of staff. The applications of coding may be decided by each operator itself.

M/S
Music / Speech Switch: This flag simply indicates whether music or speech is the primary broadcast programming. The purpose of this function is not well explained in the respective Standards; hence it comes as no surprise that it is not widely used.

ODA
Open Data Applications: The Open Data Applications feature allows data applications, not previously specified in EN 50067, to be conveyed in a number of allocated groups in an RDS transmission. The allocated groups are indicated by using type 3A group which is used to identify to a receiver the data application in use in accordance with the registration details in the EBU/RDS Forum - Open Data Applications Directory and the NRSC Open Data Applications Directory.

PI
Program Identification: This block of data identifies the broadcast station with a hexadecimal numerical code, which becomes the “digital signature” of the station. The code is assigned by the broadcasting authorities in most countries, but in the US it is calculated from a numerical encoding of station call letters. The receiver processes the PI code to assist automatic tuning features (station memories), and to prevent false switching to alternative frequencies that might be shared by broadcasters in nearby regions.

PIN
Program Item Number: The code enables the designed to use this feature receivers and recorders to respond to the preselected by the user program item(s). This feature is used via scheduled program time, to which in order to avoid ambiguity is added the day of the month.
PS

Program Service Name: This is the station’s “street name” that will appear on the receiver faceplate display. The PS can be up to eight characters in length (including spaces) and can be as simple as the station’s call letters: KWOW or KWOW FM, or a slogan: NEWSTALK or LIVE 95. The Program Service Name is automatically displayed, even on the automobile receivers. Because of driving safety considerations broadcasters are generally discouraged from scrolling messages in this field. As a matter of fact, it is a violation of both the CENELEC and the NRSC standards to scroll the PS display, although the practice has become universally common.

PTY

Program Type: The PTY data flag identifies the station format from a collection of pre-defined categories. Many RDS receivers are able to seek the listener’s preferred format automatically. This means that a car radio can switch from a fading station to a stronger one that carries the same variety of music, though not the very same program, as provided by AF switching. The PTY function of RDS helps a broadcaster catch ‘transient audience’ share. A listing of the PTY categories is given in “APPENDIX C.1” on page 130 and “APPENDIX C.2” on page 131. Under some programming circumstances, the PTY identifier may be made ‘dynamic,’ changing between categories for a station that “dayparts” (changes its format for specific time periods). The PTY code is not meant to change from song to song or to accommodate a top-of-the-hour newscast, however.

PTYN

Program Type Name: The PTYN feature allows the predefined by the RDS/RBDS Standard PTY to be further described using user-defined text (e.g. PTY=4: Sport and PTY=8: Football). The PTYN is not intended to change the default eight characters of PTY which will be used during search or wait modes. Its purpose is to show in details the program type once tuned to a program. If the broadcaster is satisfied with the default PTY name, it is not necessary to use additional data capacity for PTYN. The Program Type Name is not intended to be used for automatic PTY selection and must not be used for giving sequential information.

RT

RadioText: This is a 64-character block of plain text that the listener can select for visual display on the faceplate of the radio by pressing an INFO button on the receiver. This function is not available on many automobile radios for safety reasons, which has precipitated the frowned-upon practice of scrolling the PS field instead. Most radios have limited alphanumeric display capability, so the 64 characters of RadioText march across the front panel, much akin those annoying LED advertising signs found in airport buses or fast food emporia. Like the scrolling-PS implementation, RadioText can announce song titles and performers, run special promotions or contests, or broadcast sponsors’ messages.
RT+

RadioText Plus is “semantic analogue radio”. It allows the RDS feature RadioText (RT) to be read by the FM RDS receiving terminals. Based on the RDS RT messages, RT+ is completely backwards compatible with RT. The usage of RT+ allows the listener/user to derive additional benefits from the RDS Radio Text service. It enables FM RDS receivers to “read” Radio Text (to recognize designated objects and make them manageable) by user’s direct access to specific elements of the Radio Text messages. For example, that element could be programme associated metadata like Title and Artist of the currently playing song or a news headlines. This provides the listener with an “mp3-player feeling” while listening to analogue FM radio. The elements can also carry additional service messages or information about the Radio Station such as the telephone number or the web address of the Radio Station’s hotline. These objects, or more accurately RT+ information elements carried in the RDS RadioText (RT) messages, are identified by their location within the RT messages and by the class code of their content type. Once an information element is received and understood, a receiver is able to, for example, store the different RT+ information elements and the listener may then select and request a specific content type from the radio’s memory at an instant in time that suits the listener’s needs. Thus the listener is no longer forced to watch the RT information passing (scrolling) by. Moreover, RT+ offers selected RT message elements to car drivers on a static display, without risk of distracting the attention of the driver. Furthermore, RT+ is well suited for mobile phones with built-in FM receivers: telephone numbers can be directly used to initiate calls, and web addresses can be used to start browsing the web content offered by the radio programme provider. Last but not least, RT+ is also used for satellite radio broadcasting via DVB-S. It may be adopted by DRM and DAB in the future, too.

TA

Traffic Announcement: This is a temporary flag added to the RDS data stream only as a traffic bulletin is being aired. Some RDS car radios can be set to search for traffic bulletins among various TP stations (see TP below) while tuned to a listener’s preferred program, or even while playing a tape or CD. As soon as any TP station broadcasts a traffic bulletin, the receiver temporarily switches-over to receive it. When the bulletin is finished, the receiver switches back to the original program, tape or CD.

TDC

Transparent Data Channels: The transparent data channels consist of 32 channels, which may be used to send any type of data.

TMC

Traffic Message Channel: This feature is intended to be used for the coded transmission of traffic information.

TP

Traffic Program Identification: The TP flag identifies the station as one that routinely broadcasts traffic bulletins for motorists as part of its normal, everyday programming. When the TP flag is displayed on the receiver faceplate, the radio is searching for traffic announcements. The radio keeps track of TP stations offering this service to speed up the search-and-switch process.
APPENDIX B.2

SHORT DESCRIPTION OF ALL GROUPS ANALYZED

TYPE 0A & 0B GROUPS:
BASIC TUNING AND SWITCHING INFORMATION

Type 0A groups are usually transmitted whenever alternative frequencies exist. Type 0B groups without any type 0A groups may be transmitted only when no alternative frequencies exist. There are two methods (A and B) for transmission of alternative frequencies. The PS function is also part from this group. The Program Service name comprises eight characters. It is the primary aid to listeners in program service identification and selection.

The Program Service name is used only to identify the station or station program. The PS may be changed as required by the station. Nowadays this feature is used for transmitting artist names, song titles, promos or some kind of advertisement texts.
TYPE 1A & 1B GROUPS:
PROGRAM ITEM NUMBER AND SLOW LABELING CODES

Program Item Number, Type 1B group - The Program Item Number is the scheduled broadcast start time and day of the month as published by the broadcaster. The day of the month is transmitted as a five-bit binary number in the range 1-31. Hours are transmitted as a five-bit binary number in the range 0-23. The spare codes are not used. Minutes are transmitted as a six-bit binary number in the range 0-59. The spare codes are not used.

The most significant five bits in block 4 which convey the day of the month, if set to zero, indicate that no valid Program Item Number is being transmitted. In this case, if no Radio Paging is implemented, the remaining bits in block 4 are undefined. However, in the case of type 1A groups only, if Enhanced Radio Paging is implemented, the remaining bits carry Service Information.
TYPE 2A & 2B GROUPS: RADIOTEXT

The 4-bit text segment address defines the position of the text segments (in the current text) contained in the third (version A only) and fourth blocks. Since each text segment, in version 2A groups comprises four characters, messages of up to 64 characters in length can be sent using this version. In version 2B groups, each text segment comprises only two characters and therefore when using this version the maximum message length is 32 characters.

If a display which has fewer than 64 characters is used to display the radiotext message then memory should be provided in the receiver/decoder so that elements of the message can be displayed sequentially. This may, for example, be done by displaying elements of text one at a time in sequence or, alternatively, by scrolling the displayed characters of the message from right to left.

An important feature of type 2 groups is the Text A/B flag contained in the second block. Two situations may occur:

- If the receiver detects a change in the flag (from binary “0” to binary “1” or vice-versa), then the whole radiotext display should be cleared, and the newly received radiotext message segments should be written into the display.
- If the receiver detects no change in the flag, then the received text segments or characters should be written into the existing displayed message, and those segments or characters for which no update is received should be left unchanged.

When this application is used to transmit a 32-character message, at least three type 2A groups or at least six type 2B groups should be transmitted in every two seconds.
TYPE 3A & 3B GROUPS:
APPLICATION IDENTIFICATION FOR OPEN DATA

The type 3A group conveys, to a receiver, information about the Open Data Applications carried in a particular transmission and in which groups they could be found.

The type 3A group comprises three elements:

– Application Group type code used by that application, 16 message bits for the actual ODA and the Applications

– Identification (AID) code. Applications which actively utilize both, type A and B groups, are signaled using two type 3A groups. The Application Group type code indicates the group type used, in the particular transmission, to carry the specified ODA. Two special conditions may be indicated: 00000 - Not carried in associated group; 11111 - Temporary data fault (Encoder status) which means that incoming data to the encoder cannot be transmitted. The AID determines which software handler a receiver needs to use. This supplements information carried in the type 1A group and permits groups specified in this standard for EWS, IH, RP and TMC to be re-allocated when these features are not used. This method of allocating and defining Open Data Applications in an RDS transmission allows the addition and subtraction of ODAs, without constraint or the need to await the publication of new standards. For each group type addressed by the Application Group Type codes of a particular transmission, only one application may be identified as the current user of the channel.

- The AID code 0000 (Hex) may be used to indicate that the respective group type is being used for the normal feature specified in this standard. Application Identification codes 0001 to FFFF (Hex) indicate applications as specified in the ODA Directory. The ODA Directory specification associated with a particular AID code defines the use of type A and type B groups as follows:
 – type A groups used alone (mode 1.1);
 – type B groups used alone (mode 1.2);
 – type A groups and type B groups used as alternatives (mode 2);
 – type A groups and type B groups used together (mode 3).

It is important to note that the ODA Directory specification should not specify the actual type A and type B groups to be used, since these are assigned in each transmission by the type 3A group. The AID feature indicates that a particular ODA is being carried in a transmission. Each application will have unique requirements for transmission of its respective AID, in terms of repetition rate and timing. These requirements should be detailed in the respective ODA specification. The specification must also detail the AID signaling requirements for such times when an application assumes or loses the use of a group type channel.
TYPE 4A & 4B GROUPS: CLOCK-TIME AND DATE, OPEN DATA APPLICATION

The transmitted clock-time and date should be accurately set to UTC plus local offset time. Otherwise, the transmitted CT codes shall all be set to zero. When this application is used, one type 4A group will be transmitted every minute. The local time is composed of Coordinated Universal Time (UTC) plus local time offset. The local time offset is expressed in multiples of half hours within the range -12h to +12h and is coded as a six-bit binary number. “0” = positive offset (East of zero degree longitude), and “1” = negative offset (West of zero degrees longitude). The information relates to the epoch immediately following the start of the next group. The Clock time group is inserted so that the minute edge will occur within ± 0.1 seconds of the end of the Clock time group.

Minutes are coded as a six-bit binary number in the range 0-59 (the spare codes are not used). Hours are coded as five-bit binary number in the range 0-23 (the spare codes are not used). The date is expressed in terms of Modified Julian Day and coded as a 17-bit binary number in the range 0-99999. Note that the Modified Julian Day date changes at UTC midnight, not at local midnight. Accurate CT based on UTC plus local time offset should be implemented on the transmission where TMC and/or Radio paging is implemented.

4B groups are usable for Open data (see “Type 3A & 3B groups” on page 116)
TYPE 5A & 5B GROUPS:
TRANSPARENT DATA CHANNELS OR ODA

These channels may be used:
- To send alphanumeric characters or other text (including mosaic graphics);
- for transmission of computer programs and similar data not for display.

Details of implementation of these last options are to be specified later. The repetition rate of these group types may be chosen to suit the application and the available channel capacity at the time.
TYPE 6A & 6B GROUPS: IN-HOUSE APPLICATIONS OR ODA

Type 6A groups are used for ODA and IH. In case, this group is used for ODA applications refer to “Type 3A & 3B groups” description. There are some unreserved bits in these groups. The contents of the unreserved bits in these groups may be defined unilaterally by the operator. Consumer receivers should ignore the in-house information coded in these groups. The repetition rate of these group types may be chosen to suit the application and the available channel capacity at the time.
TYPE 7A & 7B GROUPS:
RADIO PAGING OR ODA

Type 7A groups are used for Radio Paging or ODA (see “Type 3A & 3B groups” on page 116)
TYPE 8A & 8B GROUPS: TRAFFIC MESSAGE CHANNEL OR ODA

Type 8A groups are used for Traffic Message Channel (TMC); if used for ODA refer to “Type 3A & 3B groups” description. This group carries the TMC messages. The specification for TMC, using the so called ALERT C protocol, also makes use of type 1A and/or type 3A groups together with 4A groups.
TYPE 9A & 9B GROUPS:
EMERGENCY WARNING SYSTEMS OR ODA

These groups are transmitted very infrequently, unless an emergency occurs or test transmissions are required. Type 9A group is used for EWS; if used for ODA refer to "Type 3A & 3B groups" description. The ODA may be used only in type B of these groups. Format and application of the bits allocated for EWS messages may be assigned unilaterally by each country. However, the ECC feature must be transmitted in type 1A groups when EWS is implemented.
TYPE 10A & 10B GROUPS:
PROGRAM TYPE NAME (10A) AND OPEN DATA (10B)

The type 10A group allows further description of the current Program Type, for example, when using the PTY code 4: SPORT, a PTYN of “Football” may be indicated to give more details about that program. PTYN should be used only to enhance the Program Type information and it should not be used for sequential information. The A/B flag is toggled when a change is made in the PTYN being broadcast. Program Type Name (PTYN) (for display) is transmitted as 8-bit characters as defined in the 8-bit code tables in annex E. Eight characters (including spaces) are allowed for each PTYN and are transmitted as four character segments in each type 10A group. ODA - Type 10B group see “Type 3A & 3B groups” description.
TYPE 11A & 11B GROUPS:
OPEN DATA APPLICATION

Open data - Type 11A and 11B groups *(see “Type 3A & 3B groups” on page 116)*

<table>
<thead>
<tr>
<th>Main</th>
<th>0 AB</th>
<th>1 AB</th>
<th>2 AB</th>
<th>3 AB</th>
<th>4 AB</th>
<th>5 AB</th>
<th>6 AB</th>
<th>7 AB</th>
<th>8 AB</th>
<th>TMC</th>
<th>9 AB</th>
<th>10 AB</th>
<th>11 AB</th>
<th>12 AB</th>
<th>13 AB</th>
<th>14 AB</th>
<th>15 AB</th>
<th>R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1</td>
<td>Block 2</td>
<td>Block 3</td>
<td></td>
</tr>
</tbody>
</table>
TYPE 12A & 12B GROUPS:
OPEN DATA APPLICATION

Open data - Type 12A and 12B groups (see “Type 3A & 3B groups” on page 116)
TYPE 13A & 13B GROUPS: ENHANCED RADIO PAGING OR ODA

The type 13A group is used to transmit the information relative to the network and the paging traffic. Its primary purpose is to provide an efficient tool for increasing the battery life time of the pager. These groups are transmitted once or twice at the beginning of every interval (after the type 4A group at the beginning of each minute or after the first type 1A group at the beginning of each interval).

13B groups are usable for Open Data (see “Type 3A & 3B groups” on page 116)
TYPE 14A & 14B GROUPS: ENHANCED OTHER NETWORKS INFORMATION (EON)

These groups are transmitted if Enhanced Other Networks information (EON) is implemented. AF codes in type 14A groups are used to refer to frequencies of other networks. There are two AF methods for transmitting this information. Variant 4 utilizes AF method A coding to transmit up to 25 frequencies; the coding method is as described above for type 0A groups. The PI code of the other network to which the AF list applies is given in block 4 of the group. Variant 5 is used for the transmission of “Mapped frequency pairs”. This is used to specifically reference a frequency in the tuned network to a corresponding frequency in another network. This is particularly used by a broadcaster that transmits several different services from the same transmitter tower with the same coverage areas. The first AF code in block 3 refers to the frequency of the tuned network, the second code is the corresponding frequency of the other network identified by the PI code in block 4. Where it is necessary to map one tuning frequency to more than one VHF/FM frequency for the cross-referenced program service (due to multiple use of the tuning frequency or because the cross-referenced program is receivable at more than one frequency within the service area associated with the tuning frequency), then variants 6, 7 and 8 are used to indicate second, third and fourth mapped frequencies, respectively. LF/MF mapped frequencies are implicitly signaled by using variant 9. AF Code 250 is not used with the mapped AF method.
TYPE 15A & 15B GROUPS:
FAST BASIC TUNING AND SWITCHING INFORMATION

Encoder manufactures usually eliminate this group type on new equipment. The RDS standard currently has no definition for this group. It is intended that type 15A groups should be inserted where it is desired to speed up acquisition time of the PS name. No alternative frequency information is included in 15A groups, and this group will be used to supplement type 0B groups. If alternate frequencies exist, type 0A will still be required. It is intended that type 15B groups should be inserted where it is desired to increase the repetition rate of the switching information contained in block 2 of type 0 groups without increasing the repetition rate of the other information contained in these groups. No alternative-frequency information or program-service name is included in 15B groups, and this group will be used to supplement rather than to replace type 0A or 0B groups.

When groups of this type are transmitted, the repetition rate may be chosen to suit the application and the available channel capacity at the time.
RADIOTEXT PLUS (RT+)

RadioText Plus is “semantic analogue radio”. It allows the RDS feature RadioText (RT) to be read by the FM RDS receiving terminals. Based on the RDS RT messages, RT+ is completely backwards compatible with RT. The usage of RT+ allows the listener/user to derive additional benefits from the RDS Radio Text service. It enables FM RDS receivers to “read” Radio Text (to recognize designated objects and make them manageable) by user’s direct access to specific elements of the Radio Text messages. For example, that element could be programme associated metadata like Title and Artist of the currently playing song or a news headlines. This provides the listener with an “mp3-player feeling” while listening to analogue FM radio. The elements can also carry additional service messages or information about the Radio Station such as the telephone number or the web address of the Radio Station’s hotline. These objects, or more accurately RT+ information elements carried in the RDS RadioText (RT) messages, are identified by their location within the RT messages and by the class code of their content type. Once an information element is received and understood, a receiver is able to, for example, store the different RT+ information elements and the listener may then select and request a specific content type from the radio’s memory at an instant in time that suits the listener’s needs. Thus the listener is no longer forced to watch the RT information passing (scrolling) by. Moreover, RT+ offers selected RT message elements to car drivers on a static display, without risk of distracting the attention of the driver. Furthermore, RT+ is well suited for mobile phones with built-in FM receivers: telephone numbers can be directly used to initiate calls, and web addresses can be used to start browsing the web content offered by the radio programme provider. Last but not least, RT+ is also used for satellite radio broadcasting via DVB-S. It may be adopted by DRM and DAB in the future, too.

All additional information necessary for implementing the RT+ service is carried in the RDS group 3A and in an appropriate RDS ODA group.
APPENDIX C.1

PTY Code Description Used in RBDS Mode – North America

<table>
<thead>
<tr>
<th>PTY</th>
<th>Short Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>News</td>
<td>News reports, either local or network in origin.</td>
</tr>
<tr>
<td>2</td>
<td>Information</td>
<td>Programming that is intended to impart advice.</td>
</tr>
<tr>
<td>3</td>
<td>Sports</td>
<td>Sports reporting, commentary, and/or live event coverage, either local or network in origin.</td>
</tr>
<tr>
<td>4</td>
<td>Talk</td>
<td>Call-in and/or interview talk shows either local or national in origin.</td>
</tr>
<tr>
<td>5</td>
<td>Rock</td>
<td>Album cuts.</td>
</tr>
<tr>
<td>6</td>
<td>Classic Rock</td>
<td>Rock oriented oldies, often mixed with hit oldies, from a decade or more ago.</td>
</tr>
<tr>
<td>7</td>
<td>Adult Hits</td>
<td>An up-tempo contemporary hits format with no hard rock and no rap.</td>
</tr>
<tr>
<td>8</td>
<td>Soft Rock</td>
<td>Album cuts with a generally soft tempo.</td>
</tr>
<tr>
<td>9</td>
<td>Top 40</td>
<td>Current hits, often encompassing a variety of rock styles.</td>
</tr>
<tr>
<td>10</td>
<td>Country</td>
<td>Country music, including contemporary and traditional styles.</td>
</tr>
<tr>
<td>11</td>
<td>Oldies</td>
<td>Popular music, usually rock, with 80% or greater non-current music.</td>
</tr>
<tr>
<td>12</td>
<td>Soft</td>
<td>A cross between adult hits and classical, primarily non-current softrock originals.</td>
</tr>
<tr>
<td>13</td>
<td>Nostalgia</td>
<td>Big-band music.</td>
</tr>
<tr>
<td>14</td>
<td>Jazz</td>
<td>Mostly instrumental, includes both traditional jazz and more modern “smooth jazz.”</td>
</tr>
<tr>
<td>15</td>
<td>Classical</td>
<td>Mostly instrumentals, usually orchestral or symphonic music.</td>
</tr>
<tr>
<td>16</td>
<td>Rhythm and Blues</td>
<td>A wide range of musical styles, often called “urban contemporary.”</td>
</tr>
<tr>
<td>17</td>
<td>Soft R and B</td>
<td>Rhythm and blues with a generally soft tempo.</td>
</tr>
<tr>
<td>18</td>
<td>Foreign Language</td>
<td>Any programming format in a language other than English.</td>
</tr>
<tr>
<td>19</td>
<td>Religious Music</td>
<td>Music programming with religious lyrics.</td>
</tr>
<tr>
<td>20</td>
<td>Religious Talk</td>
<td>Call-in shows, interview programs, etc. with a religious theme.</td>
</tr>
<tr>
<td>21</td>
<td>Personality</td>
<td>A radio show where the on-air personality is the main attraction.</td>
</tr>
<tr>
<td>22</td>
<td>Public</td>
<td>Programming that is supported by listeners and/or corporate sponsors instead of advertising.</td>
</tr>
<tr>
<td>23</td>
<td>College</td>
<td>Programming produced by a college or university radio station.</td>
</tr>
<tr>
<td>24</td>
<td>Spanish Talk</td>
<td>Call-in shows, interview programs, etc. in the Spanish language</td>
</tr>
<tr>
<td>25</td>
<td>Spanish Music</td>
<td>Music programming in the Spanish language</td>
</tr>
<tr>
<td>26</td>
<td>Hip-Hop</td>
<td>Popular music incorporating elements of rap, rhythm-and-blues, funk, and soul</td>
</tr>
<tr>
<td>27-28</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Weather</td>
<td>Weather forecasts or bulletins that are non-emergency in nature.</td>
</tr>
<tr>
<td>30</td>
<td>Emergency Test</td>
<td>Broadcast when testing emergency broadcast equipment or receivers. Not intended for searching or dynamic switching for consumer receivers. Receivers may, if desired, display “TEST” or “Emergency Test”.</td>
</tr>
<tr>
<td>31</td>
<td>Emergency</td>
<td>Emergency announcement made under exceptional circumstances to give warning of events causing danger of a general nature. Not to be used for searching - only used in a receiver for dynamic switching.</td>
</tr>
</tbody>
</table>

NOTE: These definitions can differ slightly between various language versions.
APPENDIX C.2

PTY Code Description Used in RDS Mode – Europe, Asia

<table>
<thead>
<tr>
<th>Pty</th>
<th>Short Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>News</td>
<td>Short accounts of facts, events and publicly expressed views, reportage and actuality.</td>
</tr>
<tr>
<td>2</td>
<td>Current affairs</td>
<td>Topical program expanding or enlarging upon the news, generally in different presentation style or concept, including debate, or analysis.</td>
</tr>
<tr>
<td>3</td>
<td>Information</td>
<td>Program the purpose of which is to impart advice in the widest sense.</td>
</tr>
<tr>
<td>4</td>
<td>Sport</td>
<td>Program concerned with any aspect of sport.</td>
</tr>
<tr>
<td>5</td>
<td>Education</td>
<td>Program intended primarily to educate, of which the formal element is fundamental.</td>
</tr>
<tr>
<td>6</td>
<td>Drama</td>
<td>All radio plays and serials.</td>
</tr>
<tr>
<td>7</td>
<td>Culture</td>
<td>Programs concerned with any aspect of national or regional culture.</td>
</tr>
<tr>
<td>8</td>
<td>Science</td>
<td>Programs about the natural sciences and technology.</td>
</tr>
<tr>
<td>9</td>
<td>Varied</td>
<td>Used for mainly speech-based programs usually of light-entertainment nature, not covered by other categories. Examples include: quizzes, games, personality interviews.</td>
</tr>
<tr>
<td>10</td>
<td>Pop</td>
<td>Commercial music, which would generally be considered to be of current popular appeal, often featuring in current or recent record sales charts.</td>
</tr>
<tr>
<td>11</td>
<td>Rock</td>
<td>Contemporary modern music, usually written and performed by young musicians.</td>
</tr>
<tr>
<td>12</td>
<td>Easy Listening</td>
<td>Current contemporary music considered to be “easy-listening”, as opposed to Pop, Rock or Classical, or one of the specialized music styles, Jazz, Folk or Country. Music in this category is often but not always, vocal, and usually of short duration.</td>
</tr>
<tr>
<td>13</td>
<td>Light classics</td>
<td>Classical Musical for general, rather than specialist appreciation. Examples of music in this category are instrumental music, and vocal or choral works.</td>
</tr>
<tr>
<td>14</td>
<td>Serious classics</td>
<td>Performances of major orchestral works, symphonies, chamber music etc., and including Grand Opera.</td>
</tr>
<tr>
<td>15</td>
<td>Other music</td>
<td>Musical styles not fitting into any of the other categories. Particularly used for specialist music of which Rhythm & Blues and Reggae are examples.</td>
</tr>
<tr>
<td>16</td>
<td>Weather</td>
<td>Weather reports and forecasts and Meteorological information.</td>
</tr>
<tr>
<td>17</td>
<td>Finance</td>
<td>Stock Market reports, commerce, trading etc.</td>
</tr>
<tr>
<td>18</td>
<td>Children’s programs</td>
<td>For programs targeted at a young audience, primarily for entertainment and interest, rather than where the objective is to educate.</td>
</tr>
<tr>
<td>19</td>
<td>Social Affairs</td>
<td>Programs about people and things that influence them individually or in groups. Includes: sociology, history, geography, psychology and society.</td>
</tr>
<tr>
<td>20</td>
<td>Religion</td>
<td>Any aspect of beliefs and faiths, involving a God or Gods, the nature of existence and ethics.</td>
</tr>
<tr>
<td>21</td>
<td>Phone In</td>
<td>Involving members of the public expressing their views either by phone or at a public forum.</td>
</tr>
<tr>
<td>22</td>
<td>Travel</td>
<td>Features and programs concerned with travel to near and far destinations, package tours and travel ideas and opportunities. Not for use for Announcements about problems, delays, or roadworks affecting immediate travel where TP/TA should be used.</td>
</tr>
<tr>
<td>23</td>
<td>Leisure</td>
<td>Programs concerned with recreational activities in which the listener might participate. Examples include, Gardening, Fishing, Antique collecting, Cooking, Food & Wine etc.</td>
</tr>
<tr>
<td>24</td>
<td>Jazz Music</td>
<td>Polyphonic, syncopated music characterized by improvisation.</td>
</tr>
<tr>
<td>25</td>
<td>Country Music</td>
<td>Songs which originate from, or continue the musical tradition of the American Southern States. Characterized by a straightforward melody and narrative story line.</td>
</tr>
<tr>
<td>26</td>
<td>National Music</td>
<td>Current Popular Music of the Nation or Region in that country’s language, as opposed to International ‘Pop’ which is usually US or UK inspired and in English.</td>
</tr>
<tr>
<td>27</td>
<td>Oldies Music</td>
<td>Music from the so-called “golden age” of popular music.</td>
</tr>
<tr>
<td>28</td>
<td>Folk Music</td>
<td>Music which has its roots in the musical culture of a particular nation, usually played on acoustic instruments. The narrative or story may be based on historical events or people.</td>
</tr>
<tr>
<td>29</td>
<td>Documentary</td>
<td>Program concerned with factual matters, presented in an investigative style.</td>
</tr>
<tr>
<td>30</td>
<td>Alarm Test</td>
<td>Broadcast when testing emergency broadcast equipment or receivers. Not intended for searching or dynamic switching for consumer receivers. Receivers may, if desired, display “TEST” or “Alarm Test”.</td>
</tr>
<tr>
<td>31</td>
<td>Alarm</td>
<td>Emergency announcement made under exceptional circumstances to give warning of events causing danger of a general nature. Not to be used for searching - only used in a receiver for dynamic switching.</td>
</tr>
</tbody>
</table>